All truths are easy to
understand once they
are discovered; the
point is to discover them.

- Galileo Galilei
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CONSTITUTION OF INDIA

Preamble
WE, THE PEOPLE OF INDIA, having

solemnly resolved to constitute India into a
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SOVEREIGN SOCIALIST SECULAR DEMOCRATIC REPUBLIC __ AN 4

and to secure to all its citizens:
JUSTICE
Social, economic and political;
LIBERTY
of thought, expression, belief, faith and worship;
EQUALITY
of status and of opportunity; and to
promote among them all
FRATERNITY Y
assuring the dignity of the individual and the unity and 2]
integrity of the Nation; XXX X))
IN OUR CONSTITUENT ASSEMBLY ‘DIU’
this twenty-sixth day of November, 1949, do ixxx:
HEREBY ADOPT, ENACT AND GIVE TO
OURSELVES
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Foreword

The National Curriculum Framework (NCF), 2005, recommends that children’s life at
school must be linked to their life outside the school. This principle marks a departure
from the legacy of bookish learning which continues to shape our system and causes a
gap between the school, home and community. The syllabi and textbooks developed on
the basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the direction
of a child-centred system of education outlined in the National Policy on Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognise that, given space, time and freedom, children
generate new knowledge by engaging with the information passed on to them by adults.
Treating the prescribed textbook as the sole basis of examination is one of the key reasons
why other resources and sites of learning are ignored. Inculcating creativity and initiative
is possible if we perceive and treat children as participants in learning, not as receivers of
a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this textbook
proves for making children’s life at school a happy experience, rather than a source of
stress or boredom. Syllabus designers have tried to address the problem of curricular
burden by restructuring and reorienting knowledge at different stages with greater
consideration for child psychology and the time available for teaching. The textbook
attempts to enhance this endeavour by giving higher priority and space to opportunities
for contemplation and wondering, discussion in small groups, and activities requiring
hands-on experience.

The National Council of Educational Research and Training (NCERT) appreciates the
hard work done by the Textbook Development Committee responsible for this textbook.
We wish to thank the Chairperson of the advisory group in Science and Mathematics,
Professor J.V. Narlikar and the Chief Advisor for this textbook, Dr. H.K. Dewan for guiding
the work of this committee. Several teachers contributed to the development of this textbook;
we are grateful to their principals for making this possible. We are indebted to the
institutions and organisations which have generously permitted us to draw upon their
resources, material and personnel. We are especially grateful to the members of the National
Monitoring Committee, appointed by the Department of Secondary and Higher Education,
Ministry of Human Resource Development under the Chairpersonship of Professor Mrinal
Miri and Professor G.P. Deshpande, for their valuable time and contribution. As an
organisation committed to the systemic reform and continuous improvement in the quality
of its products, NCERT welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director

New Delhi National Council of Educational
20 November 2006 Research and Training



FOREWORD

“Without Mathematics, there’s nothing you can do. Everything around you is mathematics.
Everything around you is numbers” - Shakuntala Devi

India has a rich tradition and several contributions to Mathematics, Since ancient times
and the legacy has continued over generations by various means. Mathematics provides aneffective way
of building mental discipline and encourages logical reasoning and mental rigor. Besides this, mathematical
knowledge also plays a crucial role in understanding the Content of other School Subjects in the School.

The New Educational policy (NEP), 2020, provides a platform to build, nurture, foster, encourage
and multiply mathematical thinking. It’s introduced the reforms needed to balance the need for 21* century
employment and entrepreneurship, which is marked by critical, lateral and mathematical thinking.

As efforts are made in preparing high-quality bilingual text books and teaching-learning
materials for mathematics, so that the students are enabled to think and speak about the subject both in
their home language / mother tongue in English .

The State council of Educational Research and Training (SCERT), Andhra Pradesh (A.P.)
has been adopting the National Council of Educational Research and Training (NCERT) Curriculum in the
State Starting from the Academic year 2022-23, for the class VIII and now, it is for the class VI in this
academic year, 2023-24, with the sole aim of preparing the Government School Students, hailing from
even a very backward area, to compete on par with any corporate School student in this Competitive
world.

We are thankful and indebted to our Honourable chief Minister Sri Y. S. Jagan Mohan
Reddy who’s committed for Systematic reforms and continuous improvement in quality education, in
order togroom and see our students, as Global citizens,

We extend our gratitude to our Hon’ble Minister for Education, Sri Botcha Satyanarayana for his
continued support in this endeavour. Our special thanks to Sri Praveen Prakash,IAS, Principal Secretary
to Government, Department of School Education,A.P.,Sri. S. Suresh Kumar, IAS, Commissioner of School
Education, and Ms. Nidhi Meena IAS,Special officer, English Medium Project,A.P., for their constant
motivation and guidance.

We convey oursincere thanks to the translators who’ve carried out the translation work of NCERT
VI class mathematics textbook, content into Telugu Language. We also thank our Editors, Subject Co-
ordinators andDTP and Layout designers for their Contribution for the development of this textbook. We
invite Constructive feedback from the teachers, parents and Educationalists for further improvement of the
text book, in the interest of students’community.

“Teaching Mathematics is a journey,not a destination” Keep going ahead.

Dr. B. Pratap Reddy,
Director,
State Council of Educational

Research and Training,
Andhra Pradesh



Rationalisation of Content in the Textbooks

In view of the COVID-19 pandemic, it is imperative to reduce content load on students.
The National Education Policy 2020, also emphasises reducing the content load and
providing opportunities for experiential learning with creative mindset. In this
background, the NCERT has undertaken the exercise to rationalise the textbooks across
all classes. Learning Outcomes already developed by the NCERT across classes have
been taken into consideration in this exercise.

Contents of the textbooks have been rationalised in view of the following:

Overlapping with similar content included in other subject areas in the same class
Similar content included in the lower or higher class in the same subject
Difficulty level

Content, which is easily accessible to students without much interventions from
teachers and can be learned by children through self-learning or peer-learning

Content, which is irrelevant in the present context

This present edition, is a reformatted version after carrying out the changes given above.
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A Note for the Teachers

athematics has an important role in our life, it not only helps in day-to-day situations

but also develops logical reasoning, abstract thinking and imagination. It enriches life
and provides new dimensions to thinking. The struggle to learn abstract principles develops
the power to formulate and understand arguments and the capacity to see interrelations
among concepts. The enriched understanding helps us deal with abstract ideas in other subjects
as well. It also helps us understand and make better patterns, maps, appreciate area and
volume and see similarities between shapes and sizes. The scope of Mathematics includes
many aspects of our life and our environment. This relationship needs to be brought out at all
possible places.

Learning Mathematics is not about remembering solutions or methods but knowing
how to solve problems. We hope that you will give your students a lot of opportunities to
create and formulate problems themselves. We believe it would be a good idea to ask them
to formulate as many new problems as they can. This would help children in developing an
understanding of the concepts and principles of Mathematics. The nature of the problems
set up by them becomes varied and more complex as they become confident with the ideas
they are dealing in.

The Mathematics classroom should be alive and interactive in which the children should
be articulating their own understanding of concepts, evolving models and developing
definitions. Language and learning Mathematics have a very close relationship and there
should be a lot of opportunity for children to talk about ideas in Mathematics and bring in
their experiences in conjunction with whatever is being discussed in the classroom. There
should be no obvious restriction on them using their own words and language and the shift
to formal language should be gradual. There should be space for children to discuss ideas
amongst themselves and make presentations as a group regarding what they have
understood from the textbooks and present examples from the contexts of their own
experiences. They should be encouraged to read the book in groups and formulate and
express what they understand from it.

Mathematics requires abstractions. Itis a discipline in which the learners learn to generalise,
formulate and prove statements based on logic. In learning to abstract, children would need
concrete material, experience and known context as scaffolds to help them. Please provide
them with those but also ensure that they do not get over dependent on them. We may point
out that the book tries to emphasise the difference between verification and proof. These two
ideas are often confused and we would hope that you would take care to avoid mixing up
verification with proof.

There are many situations provided in the book where children will be verifying
principles or patterns and would also be trying to find out exceptions to these. So, while on
the one hand children would be expected to observe patterns and make generalisations,
they would also be required to identify and find exceptions to the generalisations, extend
patterns to new situations and check their validity. This is an essential part of the ideas of
Mathematics learning and therefore, if you can find other places where such exercises can
be created for students, it would be useful. They must have many opportunities to solve
problems themselves and reflect on the solutions obtained. It is hoped that you would give
children the opportunity to provide logical arguments for different ideas and expect them
to follow logical arguments and find loopholes in the arguments presented. This is necessary
for them to develop the ability to understand what it means to prove something and also
become confident about the underlying concepts.



There is expectation that in your class, Mathematics will emerge as a subject of exploration
and creation rather than an exercise of finding old answers to old and complicated problems.
The Mathematics classroom should not expect a blind application of ununderstood algorithm
and should encourage children to find many different ways to solve problems. They need
to appreciate that there are many alternative algorithms and many strategies that can be
adopted to find solutions to problems. If you can include some problems that have the
scope for many different correct solutions, it would help them appreciate the meaning of
Mathematics better.

We have tried to link chapters with each other and to use the concepts learnt in the initial
chapters to the ideas in the subsequent chapters. We hope that you will use this as an
opportunity to revise these concepts in a spiraling way so that children are helped to appreciate
the entire conceptual structure of Mathematics. Please give more time to ideas of negative
number, fractions, variables and other ideas that are new for children. Many of these are the
basis for further learning of Mathematics.

We hope that the book will help ensure that children learn to enjoy Mathematics and
explore formulating patterns and problems that they will enjoy doing themselves. They should
learn to be confident, not feel afraid of Mathematics and learn to help each other through
discussions. We also hope that you would find time to listen carefully and identify the ideas
that need to be emphasised with children and the places where the children can be given
space to articulate their ideas and verbalise their thoughts. We look forward to your comments
and suggestions regarding the book and hope that you will send us interesting exercises that
you develop in the course of teaching so that they can be included in the next edition.



ALL MEN ARE EQUAL

“I believe implicitly that all men are born equa&‘ whether born\n
India or in England or America or in any circumstances whatsoever
have the same soul as any other. And it is because I believe in this
inherent equality of all men that I fight the doctrine of superiority
which many arrogate to themselves.”

“I have fought this doctrine of superiority in South Africa inch
by inch, and it is because of that inherent belief that I delight in
calling myself a scavenger, *\s’pinner, a weaver, a farmer and a
labourer.” |

“I consider that it is unmanly for any person to claim superiority
over a fellow being. He who claims superiority, at once forfeits the
claim to be called a man.”

M. K. Gandhi

Such teachers still exist in II’T@ (It should not be necessary to
sound the warning that I am not speaking here of spiritual teachers
who have the power to lead the aspirants to liberation.) Such
teachers have no use for flattery. Respect for them must be natural
and so is the love of the teacher for his pupil. That being so, the
teacher is ever ready to give, and the pupil equally ready to receive.
Ordinary things we may and do learn from anyone. For example, I
may learn a great deal from a carpenter with whom I have nothing
in common and who may even have many faults. I just buy from
him the requisite knowledge even as I buy from a shopkeeper my
needs. Of course, here too, a certain kind of faith is necessary. I
must have faith in the knowledge of carpentry of the carpenter from
whom [ want to learn it. If I lack that faith, then it is clear I cannot
learn anything from him. But devotion to a teacher is a different
matter. Where education aims at the building of character, the old
teacher-disciple relation is absolutely necessary. In the absence of
a feeling of devotion to the teacher, the building of character must
become difficult of achievement.

\ The Problem of Education : p. 155. @

xii



CONSTITUTION OF INDIA

Part IIT (Articles 12 — 35)

(Subject to certain conditions, some exceptions
and reasonable restrictions)

guarantees these

Fundamental Rights

Right to Equality

before law and equal protection of laws;

irrespective of religion, race, caste, sex or place of birth;
of opportunity in public employment;

by abolition of untouchability and titles.

Right to Freedom

of expression, assembly, association, movement, residence and profession;

of certain protections in respect of conviction for offences;

of protection of life and personal liberty;

of free and compulsory education for children between the age of six and fourteen years;
of protection against arrest and detention in certain cases.

Right against Exploitation

for prohibition of traffic in human beings and forced labour;
for prohibition of employment of children in hazardous jobs.

Right to Freedom of Religion

freedom of conscience and free profession, practice and propagation of religion;
freedom to manage religious affairs;
freedom as to payment of taxes for promotion of any particular religion;

freedom as to attendance at religious instruction or religious worship in educational
institutions wholly maintained by the State.

Cultural and Educational Rights

for protection of interests of minorities to conserve their language, script and culture;
for minorities to establish and administer educational institutions of their choice.

Right to Constitutional Remedies

by issuance of directions or orders or writs by the Supreme Court and High
Courts for enforcement of these Fundamental Rights.
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India is my country. All Indians are my brothers and sisters.
I love my country and I am proud of its rich and varied heritage.
I shall always strive to be worthy of it.

I shall give my parents, teachers and all elders respect,
and treat everyone with courtesy. I shall be kind to animals.
To my country and my people, I pledge my devotion.

In their well-being and prosperity alone lies my happiness.

- Pydimarri Venkata Subba Rao
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FRACTIONS

Fractions

Chapter 7

Introduction

Subhash had learnt about fractions in
Classes IV and V, so whenever possible
he would try to use fractions. One
occasion was when he forgot his lunch
at home. His friend Farida invited him
to share her lunch. She had five pooris
m her lunch box. So, Subhash and Farida
took two pooris each. Then Farida made
two equal halves of the fifth poor1 and
gave one-half to Subhash and took the
other half herself. Thus, both Subhash
and Farida had 2 full pooris and one-
half poori.

life?

1
Subhash knew that one-half is written as 5 While eating

he further divided his half poori into two equal
parts and asked Farida what fraction of the whole poori was

that piece? (Fig 7.1)

Without answering, Farida also divided her portion of the \ J

half puri1 into two equal parts and kept them beside Subhash’s

2 pooris + half-poori-Subhash
2 pooris + half-poori-Farida

Where do you come across situations with fractions in your m

Fig 7.1

I

shares. She said that these four equal parts together make Fig 7.2
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FRAcCTIONS

one whole (Fig 7.2). So, each equal part is one-fourth of one whole poori and

4
4 parts together will be 2 Of 1 whole poori.

When they ate, they discussed
what they had learnt earlier. Three

.3
parts out of 4 equal parts is 1

i)
|
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. 3. .
Similarly, 5 s obtained when we

Fig 7.3 Fig 7.4

divide a whole into seven equal parts

1
and take three parts (Fig 7.3). For g e divide a whole mto eight equal parts

and take one part out of it (Fig 7.4).

Farida said that we have learnt that a fraction is a number representing
part of a whole. The whole may be a single object or a group of objects.
Subhash observed that the parts have to be equal.

L

7.2 A Fraction

Let us recapitulate the discussion.
A fraction means a part of a group or of a region.

% 1s a fraction. We read it as “five-twelfths”. {; ﬁ-’%}?

What does “12” stand for? It is the number of equal parts NWAFRN
mto which the whole has been divided.

What does “5” stand for? It is the number of equal parts which have been
taken out.

Here 5 1s called the numerator and 12 is called the denominator.

3 . 4
Name the numerator of = and the denominator of 5
@ Play this Game

You can play this game with your friends.
Take many copies of the grid as shown here.

. ) 1
Consider any fraction, say 5

1
Each one of you should shade 5 of the grid.
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FRACTIONS

— % EXERCISE 7.1

1. Write the fraction representing the shaded portion.

OD
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@ (ii) (i) (v)
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v) (vi)
(%) (

X)

(vii) (viii)

2. Colour the part according to the given fraction.

&

0 < (i) 5 (i) %

(iv) = V) —
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FRracTIONS
3. Identify the error, if any.

. . .. 3
This is > This is ) This is )
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|
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4. What fraction of a day is 8 hours?

5. What fraction of an hour is 40 minutes?

6. Arya, Abhimanyu, and Vivek shared lunch. Arya has brought two sandwiches, one
made of vegetable and one of jam. The other two boys forgot to bring their lunch.

Arya agreed to share his sandwiches so that each person will have an equal share of
each sandwich.

(a) How can Arya divide his sandwiches so that each person has an equal share?

(b) What part of a sandwich will each boy receive?

L

7. Kanchan dyes dresses. She had to dye 30 dresses. She has so far finished 20 dresses.
What fraction of dresses has she finished?

8. Write the natural numbers from 2 to 12. What fraction of them are prime numbers?

9. Write the natural numbers from 102 to 113. What fraction of them are prime numbers?
10. What fraction of these circles have X’s in them? OO0

11. Kiristin received a CD player for her birthday. She bought 3 ® ® ® ®
CDs and received 5 others as gifts. What fraction of her total
CDs did she buy and what fraction did she receive as gifts?

7.3 Fraction on the Number Line

You have learnt to show whole numbers like 0,1,2... on a number line.
We can also show fractions on a number line. Let us draw a number line and

|
try to mark 5 onit.

1
We know that 5 1s greater than 0 and less than 1, so it should lie between 0

and 1.
1
Since we have to show 5. we divide the gap between 0 and 1 into two equal

1
parts and show 1 part as 5 (as shown in the Fig 7.5).
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=)

Fig 7.5

1 .
Suppose we want to show 3 ona number line. Into how many equal parts

should the length between 0 and 1 be divided? We divide the length between 0

i)
|

1
and 1 into 3 equal parts and show one part as 3 (as shown in the Fig 7.6)

. O | .

0 | 1

g
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W=

Fig 7.6

2 . ) 2
Can we show 7 on this number line? - means 2 parts out of 3 parts as

= 3 3
1 shown (Fig 7.7).

3

& 0 1 2 -3
- 3 3

Fig 7.7

Similarly, how would you show =

] 3 . .
- 3 Behgesed ()
=l and - on this number line?
- 3 3 .
. 0 3 1. Show 5 ona number line.
- < 1s the point zero whereas since 7 1s
a 3 , 3 1 0 5 10
I 1 whole, it can be shown by the point 1 =~ 2. Show 0° 10’ 10 and 1o o0
. (as shown in Fig 7.7) .
= 3 a number line. ‘
| So if we have to show — on a 3- Canyoushow any other fraction
- ) ) 7 between 0 and 1?
= number line, then, into how many equal Write five more fractions that

parts should the length between 0 and 1 you can show and depict them

. 3 on the number line
9 3 :
be divided? If P shows 7 then how 4. How many fractions lie between

many equal divisions lie between 0 and 0 and 1? Think, discuss and

0 7 .. write your answer?
P? Where do = and = lie?
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FRAcCTIONS

7.4 Proper Fractions

You have now learnt how to locate fractions on a number line. Locate the fractions

—~> > 7> > o onseparate number lines.

Does any one of the fractions lie beyond 1?

All these fractions lie to the left of 1as they are less than 1.

In fact, all the fractions we have learnt so far are less than 1. These are
proper fractions. A proper fraction as Farida said (Sec. 7.1), 1s a number
representing part of a whole. In a proper fraction the denominator shows the
number of parts into which the whole is divided and the numerator shows the
number of parts which have been considered. Therefore, in a proper fraction the
numerator 1s always less than the denominator.

Try TheseQ

1. Giveaproper fraction :
(a) whose numerator is 5 and denominator is 7.
(b) whose denominator is 9 and numeratoris 5.
(c) whose numerator and denominator add up to 10. How many fractions of
this kind can you make?
(d) whose denominator is 4 more than the numerator.
(Give any five. How many more can you make?)
2. Afractionis given.
How will you decide, by just looking at it, whether, the fraction is
(a) lessthan1?
(b) equalto1?
3. Fillup using one of these : >’, ‘<’ or ‘=’

i)
|

T T T e e AT e e T T T T T TR T T LT

L

1 1 3 7 4 2005
s - d 1< X bt
= @501 e 01 oty @01 © 5
= . .

- 7.5 Improper and Mixed Fractions
& ] Anagha, Ravi, Reshma and John
- shared their tiffin. Along with
=

their food, they had also,
brought 5 apples. After eating
the other food, the four friends
wanted to eat apples.

How can they share five
apples among four of them?
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FRAcCTIONS

Anagha said, ‘Let each of us have one full apple and a quarter of the fifth
apple.’

w5

/—n.q. s /—",q_ . /_“’n_ fg—*.: N
0% % Do 02
Anagha Ravi Reshma John

Reshma said, ‘That is fine, but we can also divide each of the five apples into
4 equal parts and take one-quarter from each apple.’

e ; Oy e _: e ; oy e ;

Anagha Ravi Reshma John

Ravi said, ‘In both the ways of sharing each of us would get the same share,
1.e., 5 quarters. Since 4 quarters make one whole, we can also say that each of us
would get 1 whole and one quarter. The value of each share would be five divided

5
by four. Is it written as 5 +4?” John said, ‘Yes the same as 1 ’. Reshma added

that in % , the numerator 1s bigger than the denominator. The fractions, where
the numerator 1s bigger than the denominator are called improper fractions.
Thus, fractions like %,%,§ are all improper fractions.

1. Write five improper fractions with denominator 7.

2. Write five improper fractions with numerator 11.

Ravi reminded John, ‘What is the other way of writing the share? Does it

follow from Anagha’s way of dividing ~
5 apples? ‘ ' :ﬁ}\\\ | )

John nodded, ‘Yes, It indeed \?\'j @
follows from Anagha’s way. In her \'“‘il‘:?-_-j/
way, each share 1s one whole and one . 1

! This is 1 Each of these is —

quarter. Itis 1+ 2 and written in short (one) (one-fourth)

1 1.
as IZ . Remember, IZ 1s the same as

Fig 7.8
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FRAcCTIONS

Recall the pooris eaten by Farida. She got 21 poorles (Fig 7.9), 1.e.

O 00

This is 1 This is 2—
Fig 7.9

i)
|

g

1
How many shaded halves are there in 25 ? There are 5 shaded halves.

So, the fraction can also be written D Know?
s 0 you know?

5 . .
as = 2= is the same as ~ . The grip-sizes .of tennis racquets
2° 2 2 are often in mixed numbers. For

. 1 1 7
Fractions such as 1= and 27 are called | example one size is ‘3~ inches’ and

= 4 2 8
1 Mixed Fractions. A mixed fraction has |, 43 . ..
N o 4— inches’ is another.
a combination of a whole and a part. 8

Where do you come across mixed
fractions? Give some examples.

Example 1 : Express the following as mixed fractions :

17 11 27 7
@5 7 (@©7F d 3

T T T e e AT e e T T T T T TR T T LT

17 4 1 1
- 1 ° - 1 - 4_
~ Solution : (a) 2 4 W 1.e. 4 whole and 4 more, or 47
s - 16
= 1
= 3
N 3 )11 2 b
&= (b) 11 i.e. 3 whole and = more, or 3
_ 3 - 9 3 3
2
11 +2 2 2 .2
Alternatively,— = o+2 = 4 +—=3+—-=3—
3 3 3 3 3
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FRAcCTIONS

Try (c) and (d) using both the methods for yourself.

Thus, we can express an improper fraction as a mixed fraction by dividing
the numerator by denominator to obtain the quotient and the remainder. Then
the mixed fraction will be written as Quotient RCLW

Divisor

Example 2 : Express the following mixed fractions as improper fractions:

3 1 3
2— 7— 5—

(@) 2 075 (5

3 3 2x4 3 11

ion : 22 =242 = 2270 42—
Solution : (a) 2 2 2 12

1_(Ox9+1 _ 64
(b) 79_ 9 9

3 (5xT)+3 38
52 = XD 2%
(c) >3 7 7

Thus, we can express a mixed fraction as an improper fraction as

(Whole x Denominator) + Numerator

Denominator

& = . EXERCISE 72

ee——

1. Draw number lines and locate the points on them :

134 L1237 2
(a)2444 ()8888 © 5

| W

W | o
(NN

2. Express the following as mixed fractions :

20 11 17
(@ EY (®) 3 © -

28 19 35
(d) 3 ©) o ® 3

3. Express the following as improper fractions :

3 6 5 3 3 4
(a 7Z (b) 57 (©) 28 (d) 10; (e) 97 ® 85
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FRAcCTIONS

7.6 Equivalent Fractions

Look at all these representations of fraction (Fig 7.10).

Fig 7.10

123
2°476°
number of parts. If we place the pictorial representation of one over the other
they are found to be equal. Do you agree?

Try These Q)

1. Are land 2; %andz; %andi equivalent? Give reason.
27

These fractions are representing the parts taken from the total

2. Give example of four equivalent fractions.
3. Identify the fractions in each. Are these fractions equivalent?

These fractions are called equivalent fractions. Think of three more fractions
that are equivalent to the above fractions.

Understanding equivalent fractions

1 2 3 36 . .
50 A g e all equivalent fractions. They represent the same part of
awhole.

Think, discuss and write

Why do the equivalent fractions represent the same part of a whole? How can
we obtain one from the other?
1.3 _1x3_1 1 4 1x4

2 1x2 . . 4
_Z_zxz'SImﬂaﬂy’z E_zxs_iandz 8 2x4

1
We note 5
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FRAcCTIONS

1o find an equivalent fraction of a given fraction, you may multiply both
the numerator and the denominator of the given fraction by the same number.

.. . . 1
Rajni says that equivalent fractions of 3 are:

1x2 2 I1x3 3 I1x4 4 d
3x2 6 3x3 9 3x4 [p namanymore

Do you agree with her? Explain.

Behgosed ()
1. Find five equivalent fractions of each of the following:

. 2 o1 3 .5
(@) 3 (i) 3 (i) 3 (v) 5

Another way
Is there any other way to obtain equivalent fractions? Look at Fig 7.11.

AN A\
JAN JAN

4 2
P’ 1s shaded here. 3 1s shaded here.
Fig 7.11
) ) .42 +2
These include equal number of shaded thingsi.e. 63 622

1o find an equivalent fraction, we may divide both the numerator and the
denominator by the same number.

12 . 12+3 4

One equivalent fraction of 555373

9
Can you find an equivalent fraction of 15 having denominator 5 ?

2
Example 3 : Find the equivalent fraction of 5 with numerator 6.

Solution : We know 2 x 3 = 6. This means we need to multiply both the numerator
and the denominator by 3 to get the equivalent fraction.
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FRAcCTIONS

2 2x3_ 6 6

Hence. 5=57315° 15

Can you show this pictorially?

1s the required equivalent fraction.

15
Example 4 : Find the equivalent fraction of 77 with denominator 7.

35
15 []

Solution : We have —==

35 7
We observe the denominator and find 35 +5 =7. We, therefore, divide both
15
the numerator and the denominator of 35 by 5.
Thus, 15155 3
35 35+5 7

An interesting fact

Let us now note an interesting fact about equivalent fractions. For this, complete
the given table. The first two rows have already been completed for you.

Equivalent Product of Product of Are the
fractions the numerator of the the numerator of products
1st and the denominator | the 2nd and the equal?
of the 2nd denominator of the 1st
L3 1x9=9 3x3=9 Yo
- — — X = X =
39 es
S 4x35=14 5x28=14 Yo
5 35 % 35=140 x 28 =140 es
1=
4 16
2
3 15
Sz
7 56

What do we infer? The product of the numerator of the first and the
denominator of the second is equal to the product of denominator of the first
and the numerator of the second 1n all these cases. These two products are
called cross products. Work out the cross products for other pairs of equivalent
fractions. Do you find any pair of fractions for which cross products are not
equal? This rule 1s helpful in finding equivalent fractions.
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FracTiONs
. . . 2 :
Example 5 : Find the equivalent fraction of 5 with denominator 63.

2
lution : We h —_==
Solution e have o 63

For this, we should have, 9 x[] = 2 x 63.
But63=7x9, s09x[]=2x7x9=14x9 =9x14
or9x[]=9x14

By comparison, [_]= 14. Therefore, % = % :

7.7 Simplest Form of a Fraction

: .36 . . .
Given the fraction e let us try to get an equivalent fraction in which the

numerator and the denominator have no common factor except 1.
How do we do 1t? We see that both 36 and 54 are divisible by 2.

36 _36+2_18
54 54+2 27
But 18 and 27 also have common factors other than one.

The common factors are 1, 3, 9; the highest is 9.
18 18+9 2

Therefore, 57 = 579 3

T T T AT T

.2
Now 2 and 3 have no common factor except 1; we say that the fraction 31

in the simplest form.
A fraction is said to be in the simplest (or lowest) form if its numerator
and denominator have no common factor except 1.

The shortest way A Game

The shortest way to find the | The equivalent fractions given here are quite
equivalent fraction in the interesting. Each one of them uses all the digits

simplest form is to find the | from I to 9 once!

Itrilqllqil11tln|l-lElglilislglr|f

(T T T e T T T T R TATEITATTT

HCF of the numerator and 2 3 58
denominator, and then divide 6 - 9 - 174
both of them by the HCF. 2 3 79

4 6 158

Try to find two more such equivalent fractions.
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FRACTIONS

Try These

1. Write the simplest form of :

1516
0 -5 ()=

Consider 36 .
24

The HCF of 36 and 24 1s 12.

36 36+12 3
Therefore, % a2 2 The

i) 5 (V) 55 () 5

.3
fraction 5 1s 1n the lowest form.

i)
|

49 )
2. Is o in its simplest form?

Thus, HCF helps us to reduce a fraction to
its lowest form.

=< . EXERCISE 7.3

-_5.._—~_—.|.-.ér'

. Write the fractions. Are all these fractions equivalent?

BOLYE

|

1

T T T e e AT e e T T T T T TR T T LT

il (b) O0O0O0|| OO O O O O000O
© O O OO

g O000O|[O0 OO O O 000
i 7 2. Write the fractions and pair up the equivalent fractions from each row.
.
15
= (a) )

(@) (i) (iii) (iv) V)
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FRAcCTIONS

3. Replace[ ]in each of the following by the correct number :

2 8 5 10 45 15
@7 ] ®3 [ (c)§=% @ %0 ] <e>£=9

3
4. Find the equivalent fraction of 3 having

(a) denominator 20 (b) numerator 9

(c) denominator 30 (d) numerator 27

i)
|

T T T e e AT e e T T T T T TR T T LT

36
5. Find the equivalent fraction of 13 with

(a) numerator 9 (b) denominator 4

6. Check whether the given fractions are equivalent :

3030 312 75
@355 O35 ©n 0

7. Reduce the following fractions to simplest form :

48 150 84 12 7
@ o ® - ©5% @5 © 5
8. Ramesh had 20 pencils, Sheelu had 50 pencils and Jamaal had 80 pencils. After 4
months, Ramesh used up 10 pencils, Sheelu used up 25 pencils and Jamaal used up
40 pencils. What fraction did each use up? Check if each has used up an equal fraction

L

= of her/his pencils?
- 9. Match the equivalent fractions and write two more for each.
=]
_ 250 2 180 5
i — (@) - (iv) — d =
= w o T e O
. . 220 9
i) — b) — b Z
2 () S5 ) 3 W @
7 ... 660 1
—1 —_— C —
Ao (iit) 990 © 2
& ) )
- 7.8 Like Fractions
= Fractions with same denominators are called like fractions.

1 2 3 8 7 7

1 2 3 8 . : 7 7. S

5° 15° 15° 15 &€ all like fractions. Are 7 and o8 like fractions?
Their denominators are different. Therefore, they are not like fractions. They

are called unlike fractions.

Write five pairs of like fractions and five pairs of unlike fractions.

Thus,
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FRAcCTIONS

7.9 Comparing Fractions

. 1 . : 3 .
Sohni has 35 rotis in her plate and Rita has 2Z rotis in her plate. Who has

more rotis in her plate? Clearly, Sohni has 3 full rotis and more and Rita has
less than 3 rotis. So, Sohni has more rotis.

) 1 1 ) ) .
Consider > and 3 3 shown 1n Fig. 7.12. The portion of the whole

. 1. .
corresponding to 5 I clearly larger than the portion of the same whole

corresponding to % :

1
2
1
3
1
4
1
5
Fig 7.12
I . 1
So — 1is greater than — .
2 3 Try TheseQ
But often it is not easy to say which |y, get one-fifth of a bottle of
one out of a pair of fractions 1s larger. For juice and your sister gets one-

example. which is ereater 1 or 3 9 For third of the same size of a bottle
ple, & 4 710 of juice. Who gets more?

this, we may wish to show the fractions

using figures (as in fig. 7.12), but drawing figures may not be easy especially
with denominators like 13. We should therefore like to have a systematic
procedure to compare fractions. It is particularly easy to compare like fractions.
We do this first.

7.9.1 Comparing like fractions

Like fractions are fractions with the same denominator. Which
of these are like fractions?




e
7.9 Yo Deoylo

1 3
™) 88 S @535 FZo Lok ber 5 S &° 27 5o S9N eIyt I8

&8 250 ';éé? &° &sIYo0? J)jore, %8 38 3 I8 T Zen Ok wod 08 DENS
&G eImon DO Bér 5§ 3 Bo8 S Sden aTmon. od, VLY DS EFew
EON &od.

1 1 1
560 7.12 &° S35 55360’533 5 © 809D StDoX. éoyzgorw Sngo & 5 B0

gerfo, L im0 grrio So8 8
3

N [—

W~

N

| —

Héo 7.12

Loto L sosz
©OINY 5@ &) 5 o ac‘gé. -5’@@;15'5"‘3 Q)
SR SBHre o8 w8 PTRS® DB VLD 1. S o8 5> 85065 05 Hodk
0 K0 ©od Do . STFSRD, B  Josierds DB o 858 o3
1 3 H0ETe05%D B308° KmBosy 2.8 Hokh
280, o Gloy o B 8%, Hod0 P  Fom®Hod. IHO8 & ©PH0B?
BP0 SIDBPA0D S0P @263552.6{»‘).
(B0. 7.126° &yepre), 520 Sooggore 13 Ko HForod® &) 80 Achio wod
Dogo BRI, ©oHIY HINeH I8 a8 Léé)a)dg@?é égé?\) EOA &owd.

D28 Do SPeyso mrer ego. s Hdo 6?0& 35_‘:5:0.

7.91 $e8 Pyo FFOE

Je® Hmen 28 HES0 BOAS Hamen. V8BS DD Jerd Hamen? 2°0
2317344 7
5745 2755 17




FRAcCTIONS

. . 3 5
Let us compare two like fractions: S and .

3 5

8

. C g . 3 5
In both the fractions the whole is divided into 8 equal parts. For Y and 3’

we take 3 and 5 parts respectively out of the 8 equal parts. Clearly, out of 8
equal parts, the portion corresponding to 5 parts is larger than the portion

i)
|

T T T e e AT e e T T T T T TR T T LT

. 5.3 .
corresponding to 3 parts. Hence, 3 > 3 Note the number of the parts taken is

given by the numerator. It 1s, therefore, clear that for two fractions with the

o same denominator, the fraction with the greater numerator is greater. Between
s 4 3 4 11 13 13 .

“_ 3 and 50318 greater. Between 20 and 20° 20 18 greater and so on.

= Try TheseQ

L

1. Which is the larger fraction?

D100 55y (i) 705 °" 102

Why are these comparisons easy to make?

2. Write these in ascending and also in descending order.

153 ,,1un437 13 m 7
@535z Oy5 555 O35 5703

7.9.2 Comparing unlike fractions

Two fractions are unlike if they have different denominators. For example,
1

1 . . 2 3
3 and 3 are unlike fractions. So are 3 and 5

Unlike fractions with the same numerator :

. : . ) 1 I . ) .
Consider a pair of unlike fractions 3 and 5.0 which the numerator is the

same.

C 1 1
Which is greater 3003 ?

W | —
W | —
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FRAcCTIONS

1 .. . 1 ..
In 3. we divide the whole into 3 equal parts and take one. In 5o we divide the

. .1 e
whole into 5 equal parts and take one. Note that in 3 the whole 1s divided into

1 .1
a smaller number of parts than in 3 The equal part that we get in 30 therefore,

N
larger than the equal part we get in 3 Since in both cases we take the same
: : .1
number of parts (i.e. one), the portion of the whole showing 318 larger than the
. .1 1 1
portion showing 5 and therfore 3 > 5

2 2 . . . )
In the same way we can say 375 In this case, the situation is the same as in

the case above, except that the common numerator is 2, not 1. The whole 1s

.. . 2 2
divided into a large number of equal parts for 3 than for 3 Therefore, each
: 2, . 2
equal part of the whole in case of 31 larger than that in case of 5 Therefore,
) .2, . .2
the portion of the whole showing 318 larger than the portion showing 3 and

2 2
h —=>—
ence, >

We can see from the above example that if the numerator is the same in
two fractions, the fraction with the smaller denominator is greater of
the two.

1 1 3 3 4 4

->—, =>Z, —>— _
Thus, $°70° 377 9711 and so on
22222, . . .
Let us arrange 1°13°9°5’7 In increasing order. All these fractions are

unlike, but their numerator 1s the same. Hence, in such case, the larger the

. : . .2 :
denominator, the smaller is the fraction. The smallest is 303 it has the
22 z

5

largest denominator. The next three fractions in order are —,—,— . The greatest

9°7’
.2 . : .
fraction is N (It 1s with the smallest denominator). The arrangement in

increasing order, therefore, is 3975
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FRAcCTIONS

Try These :
1. Arrange the following in ascending and descending order :
Lot
@ % BT

3 3 3 3 3 3 3

R AR TN ENPANT
(c) Write 3 more similar examples and arrange them in ascending and
descending order.

i)
|
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2 3 ) .
Suppose we want to compare 3 and e Their numerators are different and

so are their denominators. We know how to compare like fractions, i.e. fractions
with the same denominator. We should, therefore, try to change the denominators
of the given fractions, so that they become equal. For this purpose, we can use
the method of equivalent fractions which we already know. Using this method
we can change the denominator of a fraction without changing its value.

L

. . 2 3
1% Let us find equivalent fractions of both 3 and 7
~ 2.4 6.8 10 Similarly, 32622 12
| 376 9 D 15 imilarly, 7 =2 =7=7-=

) . 2 3 . .
The equivalent fractions of 3 and 2 with the same denominator 12 are

i and 2 tivel
B T |5 tepectively.
o]
_ . 2 8 3 9 . 9 8 3.2
1e. ==— and == —. Since, —= > — wehave, =>—.
= 3 12 4 12 12 12 43
. 4 5
= Example 6 : Compare 3 and e
(= Solution : The fractions are unlike fractions. Their numerators are different
. too. Let us write their equivalent fractions.
=~

4 8 12 16 20 24 28 _

525_5—2—0—2_5—3_0—5— ...........
10 15 20 25 30

L3 10_15_20_25 30
MECT2718 24 30 36 U
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FRAcCTIONS

The equivalent fractions with the same denominator are :

424 53
530 M%7 30

Since 2—5>ﬁ SO é>i
30 30 "6 S
Note that the common denominator of the equivalent fractions 1s 30 which
1s 5 x 6. It 1s a common multiple of both 5 and 6.
So, when we compare two unlike fractions, we first get their equivalent
fractions with a denominator which 1s a common multiple of the denominators

of both the fractions.

Example 7 : Compare % and g

Solution : The fractions are unlike. We should first get their equivalent fractions
with a denominator which 1s a common multiple of 6 and 15.

N 5X5_£ 13><2_§
OW> 6x5 307 15x2 30

Sine 26525 g 135
mce 30 30 W€ nave 576

Why LCM?

The product of 6 and 15 is 90; obviously 90 is also a common multiple of
6 and 15. We may use 90 instead of 30; 1t will not be wrong. But we know that it
1s easier and more convenient to work with smaller numbers. So the common
multiple that we take 1s as small as possible. This is why the LCM of the
denominators of the fractions is preferred as the common denominator.

=5 . EXERCISE 7.4

—
1. Write shaded portion as fraction. Arrange them in ascending and descending order
using correct sign ‘<, ‘=", >’ between the fractions:

D@ D

(b)
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FRAcCTIONS

4 % and % on the number line. Put appropriate signs between the

)

() Show %

fractions given.

5 2 3 1 6 8 5
-z z = 0 - =, 2 el
Lo e GUe 202

2. Compare the fractions and put an appropriate sign.

= 35 1 1 4—5 3 3

= a) =l |I= b= |- © = |= @ = |=

- @302 © 05 © 02 © 0

= 3. Make five more such pairs and put appropriate signs.

E 4. Look at the figures and write ‘<’ or *>’, ‘=" between the given pairs of fractions.
= | |

= 0 1

= 1 1

= I I |

= Y 1 2

- 2 2 2

= I I I |

= 0 1 2 3

= 3 3 3 3

= I I I I I

= 0 1 2 3 4

= 4 4 4 4 4

= I I I I I |

= 0 1 2 3 4 2

= 5 5 5 5 5 5

= I I I I I I |

= 0 1 2 3 4 3 6

= 6 6 6 6 6 6 6

E 1 1 3 2 2 2 6 3 5 5
= = |= = |= = = @ =| |= = |=
@10 0302 0202 @ 0 e I
; Make five more such problems and solve them with your friends.

5. How quickly can you do this? Fill appropriate sign. (‘<’, ‘=", >’)
1 1 2 3 3 2
@55 ©z0s ©503

3 2 3 6 7 3
@y @505 0500
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I I I I |
0 1 2 3 4
1 4 4 4 4
I I I I I I
0 1 2 3 4 5
5 5 5 5 5 5
I I I I I I I
0 1 2 3 4 5 6
6 6 6 6 6 6 6

1 1 3 2 2 2 6 3 5 5
- - b) = z = Z W = 2 =z >
0 © 302 © 208 © 20} e 20
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FRAcCTIONS

12 6 4 3 _7
@[y oLl o ;05

6 3 5 15
D5 ®©5[5;

6. The following fractions represent just three different numbers. Separate them into three

5 = groups of equivalent fractions, by changing each one to its simplest form.
= 2 3 L NS (S
= @ 15 ®) 15 © 35 D0 © % ®) 73
i =
= b PN - A 1
= ® %o T T T 25
—E 7. Find answers to the following. Write and indicate how you solved them.
B =
= I > It 4 ? b) I 2 It > ?
o E (a)sgequaos. ()sl6equa09.
E 14 1t 16? d) I : It 47
= = — — —
2 (©) s 5 equalto =" ( s |5 equalto 707
~ E . , 2
= 8. Ilaread 25 pages of a book containing 100 pages. Lalita read 3 of the same book.
o % Who read less?
§= . 3 N . 3
© = 9. Rafiq exercised for © of an hour, while Rohit exercised for 1 of an hour.
'E Who exercised for a longer time?
°E 10. In a class A of 25 students, 20 passed with 60% or more marks; in another class B of
. _é 30 students, 24 passed with 60% or more marks. In which class was a greater fraction
= of students getting with 60% or more marks?
"E__é 7.10 Addition and Subtraction of Fractions
B So far in our study we have learnt about natural numbers, whole numbers and
E then integers. In the present chapter, we are learning about fractions, a different
= E type of numbers.

Whenever we come across new type of numbers, we want to know how to
operate with them. Can we combine and add them? If so, how? Can we take away
some number from another? 1.e., can we subtract one from the other? and so on.
Which of the properties learnt earlier about the numbers hold now? Which are
the new properties? We also see how these help us deal with our daily life
situations.
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FRAcCTIONS

T T T AT T

Try These

I.

My mother divided an apple into 4 equal
parts. She gave me two parts and my
brother one part. How much apple did she
give to both of us together?

Mother asked Neelu and her brother to
pick stones from the wheat. Neelu picked
one fourth of the total stones in it and her
brother also picked up one fourth of the
stones. What fraction of the stones did both
pick up together?

Sohan was putting covers on his note books.
He put one fourth of the covers on Monday.
He put another one fourth on Tuesday and
the remaining on Wednesday. What fraction
of the covers did he put on Wednesday?

Look at the following
examples: A tea stall owner

. 1
consumes in her shop 25

litres of milk in the morning

1
and 15 litres of milk in the
evening in preparing tea. What
1s the total amount of milk
she uses in the stall?
Or Shekhar ate 2 chapatis

1
for lunch and 15 chapatis for

dinner. What 1s the total
number of chapatis he ate?
Clearly, both the situations

require the fractions to be added. Some of these additions can be done orally
and the sum can be found quite easily.

Do This ~

Itrilqllqil11tln|l-lElglilislglr|f

(T T T e T T T T R TATEITATTT

7.10.1 Adding or subtracting like fractions

How many boxes are there in total?
Colour five of its boxes in green.
What fraction of the whole 1s the green region?
Now colour another four of its boxes in yellow.
What fraction of the whole 1s this yellow region?

4 9

. , 5
Does this explain that —+-—=—7

28 28 28°

Make five such problems with your friends and solve them.

All fractions cannot be added orally. We need to know how they can be added in
different situations and learn the procedure for it. We begin by looking at addition
of like fractions.

Take a 7 x 4 grid sheet (Fig 7.13). The sheet has
seven boxes 1 each row and four boxes in each column.

Fig 7.13

What fraction of the whole is coloured altogether?
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FRAcCTIONS

Look at more examples

In Fig 7.14 (1) we have 2 quarter
parts of the figure shaded. This
means we have 2 parts out of 4

1
shaded or > of the figure shaded.

5 Thatis. 1, L_1t1_2_1 Fig. 7.14 (i) Fig. 7.14 (ii)
"4 4 4 4 2
] Look at Fig 7.14 (11)
) Fig 7.14 (i1) demonstrates Lo +l+l 3 1
999 9 9 3

What do we learn from the Tl’y These O
above examples? The sum of
two or more like fractions can { 1 5 3 { 1 1
be obtained as follows : () =+= (i) -+ (iii)) —+—+~

& 8 5 5 6 6 6
Step 1 Add the numerators. |1
Step 2 Retain the (Common) 2. Add E‘}'E . How will we show this

1. Add with the help of a diagram.

T T T AT T

L

denominator. pictorially? Using paper folding?
. Step 3 Write the fractionas: 3. Make 5 more examples of problems given
] Result of Step 1 in 1 and 2 above. ‘
Result of Step 2 Solve them with your friends.
3 1
7 Let us, thus, add 3 and 3
31 341 4
n —_—t ==
We have -
. 7 3
So, what will be the sum of ) and o ?

Finding the balance

) 5 2
Sharmila had p3 of a cake. She gave 3 out of that to her younger brother. How

EI|I.
(T T T e T T T T R TATEITATTT

much cake is left with her?

A diagram can explain the situation (Fig 7.15). (Note that, here the given
fractions are like fractions).

5 2 5-2 3 1

We find that E_E_T_ 6 or 5

(Is this not similar to the method of adding like fractions?)
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FRAcCTIONS

WVAWAVA
&\

Fig 7.15

Thus, we can say that the difference of two like fractions can be obtained as
follows:

i)
|

Step 1 Subtract the smaller numerator from the bigger numerator.

g

T T T e e AT e e T T T T T TR T T LT

Step 2 Retain the (common) denominator.

Result of Step1
Result of Step 2

Step 3 Write the fraction as :

3 8
Can we now subtract 0 from 0 ?

(Bebgpesed ()

1

1. Find the difference between % and % )

2. Mother made a gud patti in a round shape. She divided it into 5 parts. Seema ate
one piece from it. If T eat another piece then how much would be left?

3. My elder sister divided the watermelon into 16 parts. I ate 7 out them. My
friend ate 4. How much did we eat between us? How much more of the
watermelon did I eat than my friend? What portion of the watermelon
remained?

4. Make five problems of this type and solve them with your friends.

— EXERCISE 7.5

E: 1. Write these fractions appropriately as additions or subtractions :
[ (a) =
=

(b) -




e

AVAWAVA
&\

VOHBY, DotH Verd He N & (Bod DForr PotsDRY:
RS0 1 DE oo 500D ) o) &2F%08.
Ao 2 (adyd) SooRy R &OS0&.

(Go e 1&B08) HOL0)

(GoNe) 2&808) HOI0)

BrSo 3 PR vee Teahol:

3 8
0 So0& Ezé)o& 30 &2T0DH Kodr?

Behgosed ()

1. Z Kod5w E Blalg Bred BRS04,

2. ?%o@éfo @S°<§06‘3 & a’oééb w5y AP Bos. e TV 5 grrreore DifLoIod.

£ e0HEt 2.8 éwé& 830 2BR0k. IH HH&d éwé& 808 O B0 Jod Ad

€0e000?

3. $r ©¥) HYHSEHD 16 grrreore DgFBoDod. I TBSE® 7 B, T° YIS
4 B3, Sosw acgéo EID &) grifo Qod? @ fo&%ﬁe‘é)& Bo8 I Joss é)éogrzé FOBIS LW
BTNH? HF)seaHE® dod grfo DHAD &od?

4. erod 5 IHJgo H YIrHe SFaos® Sar DB B8 Jrden TraHod.

1.8 YJQgrmroH J8Jee dosedo 88 JRBOJ0 0 TeADol.:

(a) =

(b) -
OO|. 100 O _

©10 0 O O




FRAcCTIONS

2. Solve:

L+L b §+i Z_E d _+£ 2_1
@ Bt ® 57 © 777 @ o5t © 5T

5.3 -2 (1:% 1.0 5 12
O 3+ ® 50155 m g+ 03

2
3. Shubham painted 3 of'the wall space in his room. His sister Madhavi helped and

1
painted 3 of the wall space. How much did they paint together?

4. Fillin the missing fractions.

7 3 3 5 3.3 512
@ E_Dzﬁ () D_H:E © D_€_6 (d) D+27 27

5
5. Javed was given 7 of'a basket of oranges. What fraction of oranges was left in the
basket?

T T T AT T

L

7.10.2 Adding and subtracting fractions

We have learnt to add and subtract like fractions. It 1s also not very difficult to
add fractions that do not have the same denominator. When we have to add or
subtract fractions we first find equivalent fractions with the same denominator
and then proceed.

1.1 _ 1 1 .
What added to 5 gives 5 ? This means subtract 5 from > to get the required

number.

1 1
Since 5 and 5 are unlike fractions, in order to subtract them, we first find their

equivalent fractions with the same denominator. These are % and % respectively.

This is because l=—1X5 =—5 and l=—1X2 =—2
2 2x5 10 5 5x2 10
1 1.5 2 5-2 3
Therefore, 351515~ 15 10

Note that 10 is the least common multiple (LCM) of 2 and 5.

(T T T e T T T T R TATEITATTT

3 5
Example 8 : Subtract 1 from 6

3 5
Solution : We need to find equivalent fractions of 1 and o which have the
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FRAcCTIONS

same denominator. This denominator 1s given by the LCM of 4 and 6., required
LCM s 12.

Therefore. 5_3.5X2 3x3_10 9 1
CICIOTe, C "4 T 6ox2 4x3 12 12 12

2 1
Example 9 : Add 3 to 3

Solution : The LCM of 5 and 3 1s 15.

Th f %+l—£+&—£+i — E
oreore, 737 5%3  3%x5 15 15 15

E ,
= Example 10 : Slmphfy S TI’)’ These O
= 5 20 5 \
E Solution : The LCM of 5 and 20 is 20. I Add 5 and >
= 307 3x4 7 12 7
£ 507 x4 7 127 ) 5
= Therefore, <=50 =5 7720720 " 20 2. Subiract 2 from 2.
1= _12-7_5 1
- 20 20 4

How do we add or subtract mixed fractions?

Mixed fractions can be written either as a whole part plus a proper fraction or
entirely as an improper fraction. One way to add (or subtract) mixed fractions
1s to do the operation seperately for the whole parts and the other way is to
write the mixed fractions as improper fractions and then directly add (or subtract)
them.

4 5
Example 11 : Add 2; and 33

EI|I.
(T T T e T T T T R TATEITATTT

— 4 5 4 5 4 5
= ion: 2=4+3—-=2+—-43+—-=5+—-+—
| Solution 513% 5 6 st
&) 4,5_4x6 5x5
— _+_
N Now5 p 5><6 x5 (Since LCM of 5 and 6 =30)
=
- _ 24 25 49 30+19 19
—+— =1+—
T30 30 30 30 30

4 5 19 19 19
S5+=+—==5+1+—=06+ —
Thus, 5+5+7¢ 30 30 30

4 19
2243260
And, therefore, 535 30
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FRAcCTIONS

Think, discuss and write
Can you find the other way of doing this sum?
1

2
Example 12 : Find 4;—25

2 1
Solution : The whole numbers 4 and 2 and the fractional numbers — and — can

5 5
2 1
be subtracted separately. (Note that 4 > 2 and 373 )
so.42-21 -2 2-1) 2l ol
5 5 55 5 5
) . 1 5
Example 13 : Simplify: 82_23
1 5
Solution : Here 8 > 2 but 75 e We proceed as follows:
l=(8><4)+1=£ and2§=2x6+5=£
4 4 4 6 6 6
NOW,£—£=33X3—17><2 (Since LCM of 4and 6 =12)
4 6 12 12
_99-34_65_,5
12 12 12
2% —_ EXERCISE 7.6
—
1. Solve
2_1_1 b i+l i+g d §+l _+l
@ 3%7  O® pri ©gr7 @373 © 3%
f i+g 3 1 5 1 1 %+§+l 1 l+l+l
033 @ 373 W3 033y 0 3%3%%
1,2 2 .1 16 7 4 1
I-+3— 4—+3- —-= —-=
0 3735 O 437y M5y W37

2 3
2. Saritabought 35 metre of ribbon and Lalita 2 metre of ribbon. What is the total length
of'the ribbon they bought?

1 1
3. Naina was given 1 5 piece of cake and Najma was given 1 3 piece of cake. Find the

total amount of cake was given to both of them.
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" . 5.1 LTS RPN O
F1111ntheboxes.(a)|] s 4 (b)D 5 2(c)2 D 5

Complete the addition-subtraction box.

—@—» —@—»

(@ (b)

wlo | wls

e
3
1
4

. .7 . . .
. Apiece of wire — metre long broke into two pieces. One piece was - metre long.

8 4

How long is the other piece?

. Nandini’s house is — km from her school. She walked some distance and then took

10

1
a bus for E km to reach the school. How far did she walk?

. Asha and Samuel have bookshelves of the same size partly filled with books. Asha’s

5 2
shelfis P th full and Samuel’s shelf'is 35 th full. Whose bookshelf'is more full? By what

fraction?

1 7
Jaidev takes 2 3 minutes to walk across the school ground. Rahul takes 1 minutes to

do the same. Who takes less time and by what fraction?
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FRAcCTIONS

What have we discussed?

1. (a) Afractionisanumber representing a part of a whole. The whole may be a single
object or a group of objects.

(b) When expressing a situation of counting parts to write a fraction, it must be ensured
that all parts are equal.

5
2. In = 5 is called the numerator and 7 is called the denominator.

3. Fractions can be shown on a number line. Every fraction has a point associated with it
on the number line.

4. Inaproper fraction, the numerator is less than the denominator. The fractions, where
the numerator is greater than the denominator are called improper fractions. An improper
fraction can be written as a combination of a whole and a part, and such fraction then
called mixed fractions.

5. Each proper or improper fraction has many equivalent fractions. To find an equivalent
fraction of a given fraction, we may multiply or divide both the numerator and the
denominator of the given fraction by the same number.

T T T AT T

L

6. Afractionis said to be in the simplest (or lowest) form if its numerator and the denomi-
nator have no common factor except 1.
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DECIMALS

Decimals

Introduction

Savita and Shama were going to market to buy some stationary items. Savita
said, “I have 5 rupees and 75 paise”. Shama said, “I have 7 rupees and 50
paise”.

They knew how to write rupees and paise using decimals.

So Savita said, I have ¥ 5.75 and Shama said,
“I have ¥ 7.50™.

Have they written correctly?

We know that the dot represents a decimal point.

In this chapter, we will learn more about working
with decimals.

8.2 Comparing Decimals

Can you tell which is greater, 0.07 or 0.1?
Take two pieces of square papers of the same size. Divide them into 100
equal parts. For 0.07 we have to shade 7 parts out of 100.

1
Now, 0.1 = —

0 100° so, for 0.1, shade 10 parts out 100.

LR T A R T

7
0.07 = — 0.1=—
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DECIMALS

This means 0.1>0.07

Let us now compare the numbers 32.55 and 32.5. In this case , we first
compare the whole part. We see that the whole part for both the nunbers is 32
and, hence, equal.

We, however, know that the two numbers are not equal. So, we now compare
the tenth part. We find that for 32.55 and 32.5, the tenth part is also equal, then

g = we compare the hundredth part.
.= We find,

= 3255=32+i+i d325=32+i+ith fore, 32.55>32.5
B . 10 " Top and 32. 10 " oo therefore, 32. Sas
o "E the hundredth part of 32.55 is more.

= Example 1 : Which is greater?
= (a) 1 or 0.99 (b) 1.09 or 1.093

€ 0 0 9 9

= ion:(a)l=1+—+—: 099=0+—+—
“E Solution : () 10 100° 10 100
o E The whole part of 1 is greater than that of 0.99.

E Therefore, 1 >0.99

E 0 1.09=1+ 242 4+ 9 yp03=14 24 0 4 3
s E 10 100 1000 10 100 1000

_E In this case, the two numbers have same parts upto hundredth.
= ; But the thousandths part of 1.093 is greater than that of 1.09.

L E Therefore, 1.093 > 1.09.

°E

_E .~ EXERCISE 8.1
E_E 1. Whichis greater?

_E (@ 0.30r0.4 (b) 0.07 or 0.02 (¢) 30r0.8 (d) 0.50r0.05
BE () 1230r12 () 0.0990r0.19 (g) 1.50r1.50 (h) 1.4310r1.490
L E @) 3.30r3.300 () 5.640r5.603
. _E 2. Make five more examples and find the greater number from them.

Try TheseQ
(1) Write 2 rupees 5 paise
and 2 rupees 50 paise 8.3.1 Money

y md'ecunals. We know that 100 paise =% 1
(i) Write 20 rupees

; 1
7paiseand 21 rupees  Therefore, 1 paise =% —— =%0.01
75 paise in decimals? 100

8.3 Using Decimals
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DECIMALS

, _5 05 _
So, 65 paise =3 100 0.65

N
and 5 paise =% 100 =% 0.05

What is 105 paise? It is% 1 and 5 paise =% 1.05

I E 8.3.2 Length o

g = Mahesh wanted to measure the length of his f"! T_—-__ f{_,-,-;"_"]
E table top in metres. He had a 50 cm scale. 7 [Pl __—___"_,_,.f’fi

n He found that the length of the table top was | I . | I
E 156 cm. What will be its length in metres? ~ !'.

= U
1= Mahesh knew that TI’)’ These ()

N = 1 . . .

= lem =— m or 0.0l m 1. Canyou write 4 mm in ‘cm’ using

E 100 decimals?

“E 56 2. Howwill you write 7em S mmin ‘cm’
= Therefore, 56 cm=——m=0.56m . 4

o E 100 using decimals?
E Thus, the length of the table top is ~ 3- Can you now write 52 m as “km’

- = 156 cm = 100 cm + 56 cm using decimals? How will you
E write 340 m as ‘km’ using decimals?

s E lmt = = 156m How will you write 2008 min ‘km’?
E 100

© = Mahesh also wants to represent this length pictorially. He took squared
_é papers of equal size and divided them into 100 equal parts. He considered

= each small square as one cm.

&

o E

Bt

= ; 100 cm 56 cm
= 8.3.3 Weight

Nandu bought 500g potatoes, 250g capsicum, Tl’y These
700g onions, 500g tomatoes, 100g ginger and 1. Can you now write

300g radish. What is the total weight of the 456¢ as ‘kg’ using

vegetables in the bag? Let us add the weight of all decimals?

the vegetables in the bag. 2. How will you write
2kg 9¢g in ‘kg’ using

500 g+250 g+ 700 g+ 500 g+ 100g+300¢g
=2350 g

decimals?
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DECIMALS

We know that 1000 g=1kg

1
Therefore, 1 g = ng =0.001 kg

Thus, 2350 g =2000 g + 350 g

g‘g - = 2000 kg + 350 kg
=5 1000 1000
E — 2 kg +0.350 kg = 2.350 ke
E i.e.2350 g =2kg350g=2.350kg
. —g Thus, the weight of vegetables in Nandu’s bag is 2.350 kg.
£
on E K‘{;E_g,_\ EXERCISE 8.2
Lﬂ % 1. Express as rupees using decimals.
-E (a) 5paise (b) 75 paise (c) 20 paise
= ; (d) 50 rupees 90 paise (e) 725 paise
% _E 2. Express as metres using decimals.
E (a) 15cm (b) 6¢cm (©) 2m45cm
e d)9m7cm  (e) 419cm
. _é 3. Expressas cm using decimals.
°E (a) 5mm (b) 60mm  (c) 164mm
= B (d) 9cm8mm (&) 93mm
» '; 4. Express as km using decimals.
'E:E (a) 8m (b) 88 m (c) 8888 m
e E (d) 70km 5 m
E 5. Expressas kg using decimals.
o= @) 2g (b) 100 g (©)3750 ¢

(d) S5kg8¢g (e) 26kg50 g
8.4 Addition of Numbers with Decimals

Do This ~

Add 0.35and 0.42.
Take a square and divide it into 100 equal parts.
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DECIMALS

Mark 0.35 in this square by shading

3 tenths and colouring 5 hundredths.

Mark 0.42 in this square by shading

4 tenths and colouring 2 hundredths.

Now count the total number of tenths in the square and I
the total number of hundredths in the square.

Ones Tenths Hundredths
0 3 5
+ 0 4 2
0 7 7
Therefore, 0.35 +0.42 = 0.77 Try These Q

Thus, we can add decimals in the same ~ Find
way as whole numbers. (1) 0.29+0.36 (ii) 0.7 +0.08

Can younow add 0.68 and 0.54? (iii) 1.54 +1.80 (iv) 2.66 +1.85

Ones Tenths Hundredths
0 6 8
A 0 5 4
1 2 2

Thus, 0.68 +0.54=1.22

Example 2 : Lata spent % 9.50 for buying a pen and % 2.50 for one pencil. How
much money did she spend?

Solution : Money spent for pen =73 9.50
Money spent for pencil =% 2.50
Total money spent =%9.50 +%2.50
Total money spent =3 12.00

Example 3 : Samson travelled 5 km 52 m by bus, 2 km 265 m by car and the
rest 1km 30 m he walked. How much distance did he travel in all?

Solution: Distance travelledbybus = Skm52m = 5.052 km
Distance travelled by car = 2km 265 m = 2.265 km
Distance travelled on foot = 1km30m = 1.030 km
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Therefore, total distance travelled is
5.052 km
2.265 km
+ 1.030 km
8.347 km

Therefore, total distance travelled = 8.347 km

Example 4 : Rahul bought 4 kg 90 g of apples, 2 kg 60 g of grapes and
5 kg 300 g of mangoes. Find the total weight of all the fruits he bought.
Solution : Weight of apples = 4kg90g = 4.090kg
Weight of grapes = 2kg60g = 2.060kg
Weight of mangoes = 5kg300g = 5.300kg
Therefore, the total weight of the fruits bought is
4.090 kg
2.060 kg
+  5.300kg
11.450 kg

-3
T T T T T

Total weight of the fruits bought = 11.450 kg.

S~ . EXERCISE 8.3

oo e
R

1. Find the sum in each of the following :
(a) 0.007 +8.5+30.08
(b) 15+0.632+13.8
(c) 27.076 + 0.55 + 0.004
(d) 25.65 +9.005 + 3.7
(e) 0.75+10.425+2
) 280.69 +25.2+38

2. Rashid spent¥ 35.75 for Maths book and ¥ 32.60 for Science book. Find the total
amount spent by Rashid.

3. Radhika’s mother gave her ¥ 10.50 and her father gave her ¥ 15.80, find the total
amount given to Radhika by the parents.

4. Nasreen bought 3 m 20 cm cloth for her shirt and 2 m 5 cm cloth for her trouser. Find
the total length of cloth bought by her.

5. Naresh walked 2 km 35 m in the morning and 1 km 7 m in the evening. How much
distance did he walk in all?

T T T T T T T T T T T T TR ATEI AT
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6. Sunitatravelled 15 km 268 m by bus, 7 km 7 m by car and 500 m on foot in order to
reach her school. How far is her school from her residence?

7. Ravipurchased 5 kg 400 grice, 2 kg 20 g sugar and 10 kg 850g flour. Find the total
weight of his purchases.

8.5 Subtraction of Decimals

Do This ~&
Subtract 1.32 from 2.58
This can be shown by the table.

Ones Tenths Hundredths
2 5 8
— 1 3 2
1 2 6

Thus, 2.58 —1.32=1.26

Therefore, we can say that, subtraction of decimals can be done by subtracting
hundredths from hundredths, tenths from tenths, ones from ones and so on, just
as we did in addition.

Sometimes while subtracting decimals, we may need to regroup like we did
in addition.

Let us subtract 1.74 from 3.5.

Ones Tenths Hundredths
3 5 0
— 1 7 4
1 7 6
Subtract in the hundredth place. Tl’y These

> |
Can’t subtract ! 1. Subtract 1.85 from 5.46 :

SOIZC%(I)'OUP 2. Subtract 5.25 from 8.28 ;
23/ %0 3. Subtract 0.95 from 2.29 ;
4. Subtract 2.25 from 5.68.
-1 . 74
1 . 76

Thus, 3.5-1.74=1.76
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Example 5 : Abhishek had ¥ 7.45. He bought toffees forZ 5.30. Find the balance
amount left with Abhishek.

Solution : Total amount of money = 745
Amount spent on toffees = ¥ 5.30
Balance amount of money = %¥7.45-%5.30=%2.15
= Example 6 : Urmila’s school is at a distance of 5 km 350 m from her house.

_%'E She travels 1 km 70 m on foot and the rest by bus. How much distance does she

E travel by bus?
LB = Solution : Total distance of school from the house = 5.350 km
" +H Distance travelled on foot = 1.070 km

= Therefore, distance travelled by bus = 5.350 km —1.070 km

s B = 4.280 km

E Thus, distance travelled by bus = 4.280km or4 km 280 m
= g Example 7 : Kanchan bought a watermelon weighing 5 kg 200 g. Out of this she
- E gave 2 kg 750 g to her neighbour. What is the weight of the watermelon left with
__g Kanchan?
= _% Solution : Total weight of the watermelon = 5.200 kg
= g Watermelon given to the neighbour = 2.750 kg
o _% Therefore, weight of the remaining watermelon

£ = 5200kg—2.750kg =2.450 kg
= £ &= . EXERCISE 84

E "
ﬁ-% 1. Subtract:

E (a) ¥18.25 fromX 20.75
e E (b) 202.54 m from 250 m
L E (c) ¥5.36 from T 8.40
- E (d) 2.051 km from 5.206 km

(e) 0.314kg from2.107 kg
2. Find the value of :

(a) 9.756 — 6.28

(b) 21.05-15.27

(c) 18.5-6.79

(d) 11.6 —9.847
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. Tinahad 20 m 5 cm long cloth. She cuts 4 m 50 cm length

. Namita travels 20 km 50 m every day. Out of this she travels

. Rajubought a book for¥ 35.65. He gave ¥ 50 to the shopkeeper. How much money

did he get back from the shopkeeper?

. Rani had¥ 18.50. She bought one ice-cream for 11.75. How much money does she

have now?

of cloth from this for making a curtain. How much cloth is
left with her?

10 km 200 m by bus and the rest by auto. How much
distance does she travel by auto?

. Aakash bought vegetables weighing 10 kg. Out of this, 3 kg 500 gis onions,2kg 75 g

is tomatoes and the rest is potatoes. What is the weight of the potatoes?

What have we discussed?

. Every decimal can be written as a fraction.
. Any two decimal numbers can be compared among themselves. The comparison can

start with the whole part. If the whole parts are equal then the tenth parts can be
compared and so on.

. Decimals are used in many ways in our lives. For example, in representing units of

money, length and weight.
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DAtA HANDLING

Data Handling

=
5
5 Introduction
= . .
S You must have observed your teacher recording the attendance of students in
= your class everyday, or recording marks obtained by you after every test or
= examination. Similarly, you must have also seen a cricket score board. Two
i score boards have been illustrated here :
-:' Name of the bowlers| Overs | Maiden overs | Runs given | Wickets taken
= A 10 2 40 3
| B 10 1 30 2
g C 10 2 20 1
=
= D 10 1 50 4
Name of the batsmen Runs Balls faced Time (in min.)

E 45 62 75

F 55 70 81

G 37 53 67

H 22 41 55

You know that in a game of cricket the information recorded is not simply
about who won and who lost. In the score board, you will also find some
equally important information about the game. For instance, you may find
out the time taken and number of balls faced by the highest run-scorer.
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Similarly, in your day to day life, you must have seen several kinds of tables

consisting of numbers, figures, names etc.

These tables provide ‘Data’. 4 data is a collection of numbers gathered to

give some information.

9.2 Recording Data

Let us take an example of a class which is preparing to go for a picnic. The
teacher asked the students to give their choice of fruits out of banana, apple,
orange or guava. Uma is asked to prepare the list. She prepared a list of all the
children and wrote the choice of fruit against each name. This list would help

the teacher to distribute fruits according to the choice.

Raghav — Banana Bhawana —
Preeti — Apple Manoj —
Amar — Guava Donald —
Fatima — Orange Maria —
Amita — Apple Uma —
Raman — Banana Akhtar —
Radha — Orange Ritu —
Farida — Guava Salma —
Anuradha — Banana Kavita —
Rati — Banana Javed —

Apple
Banana
Apple
Banana
Orange
Guava
Apple
Banana
Guava

Banana

If the teacher wants to know the number of bananas required
for the class, she has to read the names in the list one by one
and count the total number of bananas required. To know the
number of apples, guavas and oranges separately she has to
repeat the same process for each of these fruits. How tedious
and time consuming it is! It might become more tedious if the
list has, say, 50 students.

So, Uma writes only the names of these fruits one by one
like, banana, apple, guava, orange, apple, banana, orange, guava,
banana, banana, apple, banana, apple, banana, orange, guava,
apple, banana, guava, banana.

Do you think this makes the teacher’s work easier? She
still has to count the fruits in the list one by one as she did
earlier.

Salma has another idea. She makes four squares on the floor.
Every square is kept for fruit of one kind only. She asks the
students to put one pebble in the square which

Apple
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matches their choices. i.e. a student opting for banana will put a
pebble in the square marked for banana and so on.

By counting the pebbles in each square, Salma can quickly tell
the number of each kind of fruit required. She can get the required
information quickly by systematically placing the pebbles in ~ Guava
different squares.

Try to perform this activity for 40 students and with names of any four fruits.
Instead of pebbles you can also use bottle caps or some other tokens.

9.3 Organisation of Data

To get the same information which Salma got, Ronald needs only a pen and a
paper. He does not need pebbles. He also does not ask students to come and
place the pebbles. He prepares the following table.

Banana VLSS g
Orange v Vv v 3
Apple SIS 5
Guava SIS 4

Do you understand Ronald’s table?

What does one (v') mark indicate?

Four students preferred guava. How many (v/) marks are there against guava?

How many students were there in the class? Find all this information.

Discuss about these methods. Which is the best? Why? Which method is
more useful when information from a much larger data is required?

Example 1 : A teacher wants to know the choice of food of each student as
part of the mid-day meal programme. The teacher assigns the task of
collecting this information to Maria. Maria does so using a paper and a
pencil. After arranging the choices in a column, she puts against a choice of
food one (| ) mark for every student making that choice.

Choice Number of students

Rice only AR RN
Chapati only LTI
Both rice and chapati NNRRRRRRR RN
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after seeing the table Umesh suggested a better method to count the students.
He asked Maria to organise the marks (| ) in a group of ten as shown below :

Choice Tally marks Number of students

Rice only 1 17
Chapati only ] 13
Both rice and chapati 20

Rajan made it simpler by asking her to make groups of five instead of ten, as
shown below :

Choice Tally marks Number of
students

Rice only [ 17
Chapati only [] 13
Both rice and chapati 20

Teacher suggested that the fifth mark in a group of five marks should be
used as a cross, as shown by ‘TN °. These are tally marks. Thus, N ||
shows the count to be five plus two (i.e. seven) and "N ™ shows five

plus five (i.e. ten).
With this, the table looks like :

Choice Tally marks Number of students
Rice only U U 17
Chapati only N N T 13
Bothriceandchapati | TNy NJ TN TN 20

Example 2 : Ekta 1s asked to collect data for size of shoes of students in her
Class VI. Her finding are recorded in the manner shown below :

5 4 7 5 6 7 6 5 6 6 5

4 5 6 8 7 4 6 5 6 4 6
5 7 6 7 5 7 6 4 8 7
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Javed wanted to know (1) the size of shoes worn by the maximum number of
students. (i1) the size of shoes worn by the minimum number of students. Can
you find this information?

Ekta prepared a table using tally marks.

Shoe size Tally marks Number of students
4 NN 5
3 NI 8
6 M ™ 10
7 M 7
8 [ 2

Now the questions asked earlier could be answered easily.
You may also do some such activity in your class using tally marks.

Do This

1. Collect information regarding the number of family members of your
classmates and represent it in the form of a table. Find to which category

most students belong.
Number of family Tally marks Number of students
members with that many

family members

Make a table and enter the data using tally marks. Find the number that appeared

(a) the minimum number of times?  (b) the maximum number of times?
(c) same number of times?

9.4 Pictograph
A cupboard has five | Rows Number of books === _ | Book
compartments. In Row 1

each compartment a
row of books is | RoW2 = == == == ==

arranged. Row3 == =

The details are [ ) o= 2o = = = = = ==
indicated in the e — —— -

88 Row 5 =N -

adjoining table :
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Which row has the greatest number of books? Which row has the least number
of books? Is there any row which does not have books?
You can answer these questions by just studying the diagram. The picture
visually helps you to understand the data. It is a pictograph.
A pictograph represents data through pictures of objects. It helps answer
the questions on the data at a glance.

Do This

Pictographs are often used by dailies and
magazines to attract readers attention.

Collect one or two such published pictographs
and display them in your class. Try to understand
what they say.

It requires some practice to understand the
information given by a pictograph.

9.5 Interpretation of a Pictograph

Example 3 : The following pictograph shows the number of absentees in a
class of 30 students during the previous week :

Days Number of absentees @ - 1 Absentee

My 6 6
Tew  ©oon o

Wednesday @ @

Thursday

Friday @

Saurday Ty T R T T W W

(a) On which day were the maximum number of students absent?
(b) Which day had full attendance?
(c) What was the total number of absentees in that week?

Solution : (a) Maximum absentees were on saturday. (There are 8 pictures in
the row for saturday; on all other days, the number of pictures are less).

(b) Against thursday, there is no picture, i.e. no one is absent. Thus, on that day
the class had full attendance.

(¢) There are 20 pictures in all. So, the total number of absentees in that
week was 20.
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Example 4 : The colours of fridges preferred by people living in a locality are
shown by the following pictograph :

Colours  Number of people ¥ - 10 People

Blue % % % % %
Green 9( % %

Rd ¥ § ¥ ¢ %S
White ¢ ¢

(a) Find the number of people preferring blue colour.
(b) How many people liked red colour?

Solution : (a) Blue colour is preferred by 50 people.
[ & =10, so 5 pictures indicate 5 x 10 people].
(b) Deciding the number of people liking red colour needs more care.
For 5 complete pictures, we get 5 x 10 = 50 people.
For the last incomplete picture, we may roughly take it as 5.
So, number of people preferring red colour is nearly 55.

Think, discuss and write

In the above example, the number of people who like red colour was taken as
50 + 5. If your friend wishes to take it as 50 + 8, 1s it acceptable?

Example 5 : A survey was carried out on 30 students of class VI in a school.
Data about the different modes of transport used by them to travel to school
was displayed as pictograph.

What can you conclude from the pictograph?

[ETETETR T ETETT

.
1R ] |}
JEH LI

Modes of travelling  Number of students ©) -1 Student

Private car QOO

Public bus QOO0 OO

School bus COOOO0OOOOOOO
Cycle © OO

Walking SESICECICIOIS®)

TR TITE TR T
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What can you conclude from the pictograph?
Solution : From the pictograph we find that:
(a) The number of students coming by private car is 4.

(b) Maximum number of students use the school bus. This is the most
popular way.

' (c) Cycleis used by only three students.

(d) The number of students using the other modes can be similarly found.

Days Number of wrist watches
manufactured

Mondsy QOO QE0 D
Tesky QQ0Q00 0!
Wednesdy @ QOO0 O (
5 Tsiay @ Q000000
- Friday 200000
Saurdsy @ Q000 ¢

-100 Wrist watches

|
- Example 6 : Following is the pictograph of the number of wrist watches
: manufactured by a factory in a particular week.

(a) On which day were the least number of wrist watches manufactured?

(b) On which day were the maximum number of wrist watches
manufactured?

HILHEL

(c) Find out the approximate number of wrist watches manufactured in the
particular week?

B

Solution : We can complete the following table and find the answers.

=
- Days Number of wrist watches manufactured
Monday 600
Tuesday More than 700 and less than 800
Wednesday | ...
Thursday | ...
Friday |
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~_ EXERCISE 9.1

1. InaMathematics test, the following marks were obtained by 40 students. Arrange
these marks in a table using tally marks.

AN W
O D 9 &
AN 0 — W
~ O O W
A 0 i N
A 0 N B~
A O 9

1 3
9 5
3 8
4 5

N 39 B~

(a) Find how many students obtained marks equal to or more than 7.

(b) How many students obtained marks below 4?
2. Following is the choice of sweets of 30 students of Class VI.

Ladoo, Barfi, Ladoo, Jalebi, Ladoo, Rasgulla, Jalebi, Ladoo, Barfi, Rasgulla, Ladoo,
Jalebi, Jalebi, Rasgulla, Ladoo, Rasgulla, Jalebi, Ladoo, Rasgulla, Ladoo, Ladoo,
Barfi, Rasgulla, Rasgulla, Jalebi, Rasgulla, Ladoo, Rasgulla, Jalebi, Ladoo.

(a) Arrange the names of sweets in a table using tally marks.

(b) Which sweet is preferred by most of the students?

3. Catherine threw a dice 40 times and noted the number appearing each time as

=

{ shown below :

= 1 3 5 6 6 3 5 4 1 6
—‘ 2 5 3 4 6 1 5 5 6 1
= 1 2 2 3 5 2 4 5 5 6
'1! 5 1 6 2 3 5 2 4 1 5

Make a table and enter the data using tally marks. Find the number that appeared.

HAEH ITHE]

(2) The minimum number of times (b) The maximum number of times

(c) Find those numbers that appear an equal number of times.
4. Following pictograph shows the number of tractors in five villages.

Viilages Number of tractors - 1 Tractor
Village A &% %

Village B o 56 6% 0%

VilageC  gtg % 0% % 0% 56
Village D &% o< 6%

Village E sl e Ge 0
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Observe the pictograph and answer the following questions.
(1) Which village has the minimum number of tractors?
(1) Which village has the maximum number of tractors?
(1) How many more tractors village C has as compared to village B.
(iv) What is the total number of tractors in all the five villages?
5. The number of girl students in each class of a co-educational middle school is depicted

Classes  Number of girl students - 4 Girls
!

i ¥

m

v ¥

v 4

VI

VI

VIII ¢

by the pictograph :

LIERTEEALTLLE LR IR ]

Observe this pictograph and answer the following questions :

(a) Which class has the minimum number of girl students?
(b) Is the number of girls in Class VI less than the number of girls in Class V?

TITT
[LHIEIFIEH 1 |

(c) How many girls are there in Class VII?
6. The sale of electric bulbs on different days of a week is shown below :

HAEH ITHE]

Days Number of electric bulbs @ - 2 Bulbs

Moy B EEEHEE

T[ETT

i L1

Tuesday

Wednesday

©)
)
Thursday B
)
&)
)

Friday

Saturday

Sunday
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L.
2.

Observe the pictograph and answer the following questions :

(a) How many bulbs were sold on Friday?

(b) On which day were the maximum number of bulbs sold?

(c) On which of'the days same number of bulbs were sold?

(d) On which of'the days minimum number of bulbs were sold?

(e) Ifone big carton can hold 9 bulbs. How many cartons were needed in the given
week?

In a village six fruit merchants sold the following number of fruit baskets in a particular

season

Name of Number of
fruit merchants fruit baskets

) - 100 Fruit baskets

Rahim

Lakhanpal

Anwar

Martin

Ranjit Singh

Joseph

Observe this pictograph and answer the following questions :
(a) Which merchant sold the maximum number of baskets?
(b) How many fruit baskets were sold by Anwar?

(c) The merchants who have sold 600 or more number of baskets are planning to buy
a godown for the next season. Can you name them?

What have we discussed?

We have seen that data is a collection of numbers gathered to give some information.

To get a particular information from the given data quickly, the data can be arranged
in a tabular form using tally marks.
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Mensuration

Introduction

When we talk about some plane figures as shown below we think of their
regions and their boundaries. We need some measures to compare them. We
look into these now.

.C

10.2 Perimeter

Look at the following figures (Fig. 10.1). You can make them with a wire or a string,
If you start from the point S in each case and move along the line segments
then you again reach the point S. You have made a complete round of the

[ 4
S ©

(a) (b)
Fig 10.1

LR T A R T
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shape in each case (a), (b) & (¢). The distance covered is equal to the length of
wire used to draw the figure.

This distance is known as the perimeter of the closed figure. It is the
length of the wire needed to form the figures.

The 1dea of perimeter 1s widely used in our daily life.

e A farmer who wants to fence his field.

g E e An engineer who plans to build a compound wall on all sides of a house.
= B e A person preparing a track to conduct sports.
E_ All these people use the idea of ‘perimeter’.
- ; Give five examples of situations where you need to know the perimeter.
. E Perimeter is the distance covered along the boundary forming a closed
= figure when you go round the figure once.
E Try These Q)
cn_"_z__ 1. Measure and write the length of the four sides of the top of your
£ study table. A B
‘m—g AB=  ocm D C
B BC=  com
__E_ CD=  com
® £ DA=  com
- ‘E Now, the sum of the lengths of the four sides
E =AB +BC+CD + DA
E_E = cm + cm + cm + cm
B —E =___cm
_"_E What is the perimeter?
ﬁ—% 2. Measure and write the lengths of the four sides of a page of your
N ‘E notebook. The sum of the lengths of the four sides
©E = AB +BC + CD + DA
= E = cm + cm + cm + cm
= = cm

What is the perimeter of the page?

3. Meera went to a park 150 m long and 80 m wide. She took one
complete round on its boundary. What is the distance covered by
her?
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segments).

4. Find the perimeter of the following figures:

A 40 cm B
Perimeter = AB + BC + CD + DA
(a = g = + + +
g = -
g_g D 40 cm C
_E A 5 cm B
B
B Perimeter = AB + BC + CD + DA
IR ST
s E
—_§_ D 5 cm C
;=
= 1 cm
E A B
=
£ g g Perimeter = AB + BC + CD + DE
—F X - X | +EF + FG + GH +HI
= cm cm
o E | (0 K e _ +1J+JK + KL + LA
= f . g =+ + + o+ 4
m'; J 3cm 3cm E Tt
= w + 4+
= g T _
L E 2 g _
S = E—
-= H G
= B 1cm
E A 100 m B .
o= Perimeter = AB + BC + CD + DE + EF
+ g + FA
= S
== R 2 - + o+ o+ o+
_E E \3 _
=£ Foe0m o) —
£ 2 c
D 90m -

So, how will you find the perimeter of any closed figure made up entirely
of line segments? Simply find the sum of the lengths of all the sides (which
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4. BrHS Hero $HERFradd SRSl

A 40 cm B
rﬁaég?e)é = AB + BC + CD + DA
@ s § = + + o+
g g — =
D 40 cm C
A 5 cm B
rﬁaég?e)é = AB+ BC + CD + DA
b o 5 = + o+ o+
g - — ==
o |
]
D 5cm C |
A1cmB I
L ]
g g i
5} g {)Jég?e)éﬁ = AB+ BC+ CD +DE
on
. . + EF + FG + GH +HI :
K s L C o D_ +1J+JK + KL + LA :
© g . g =+t o+ o+ o+
J 3cm 3em E _t_+_+ +
+ o+
8l s _
chmG
A 100 m B
a’né.g?oé = AB+BC+ CD + DE + EF
g + FA
@ 2 2 -+t + o+ o+
E E =__
F 60m 7
@ C
D 90 m

S°a)§, Jeore Barporred® DB B éo:ée)éé D0 T, ﬁ;@@?eéz& S der

EM"0erS? @) ghere PEH© Soeed) Jowgiore B0 (9 Barwoween).
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MENSURATION

10.2.1 Perimeter of a rectangle A 15¢m B
Let us consider a rectangle ABCD (Fig 10.2)
whose length and breadth are 15 cm and 9 cm ¢ §
respectively. What will be its perimeter?
Perimeter of the rectangle = Sum of the c
lengths of its four sides. D 15em
- Fig 10.2
g_g Remember that =AB +BC+CD + DA
— opposite sides of a =AB+BC+AB + BC
— rectangle are equal
- = s0 AB = CD, =2xAB+2xBC
B e =2 % (AB + BCQ)
o = . i =2 x (15cm + 9cm)
. E é;,ﬂ A, =2 (24em)
E R =48 cm
i £ Try TheseQ
- E Find the perimeter of the following rectangles:
h__é Length of Breadth of | Perimeter by adding Perimeter by
.= rectangle rectangle all the sides 2 x (Length + Breadth)
E 25 cm 12 cm =25cm+ 12 cm =2 x(25 cm + 12 cm)
s E +25cm+ 12 cm =2 x (37 cm)
= =74 cm =74 cm
& E 0.5m 0.25 m
; 18 cm 15 cm
£ 10.5 cm 8.5 cm
o E
:‘J—E Hence, from the said example, we notice that
= Perimeter of a rectangle = length + breadth + length + breadth
(= 1.e. Perimeter of a rectangle =2 x (length + breadth)
E Let us now see practical applications of this idea :
=
B Example 1 : Shabana wants to put a lace border all around a rectangular table
= - cover (Fig 10.3), 3 m long and 2 m wide. Find the length of the lace required

by Shabana.

Solution : Length of the rectangular table cover =3 m . :
Breadth of the rectangular table cover=2m | : 1
Shabana wants to put a lace border all around the | “+ ., * "
table cover. Therefore, the length of the lace required _
will be equal to the perimeter of the rectangular table

COver. Fig 10.3
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A 15cm B

10.2.1 885&5(H0 o) SHepSod
2% égﬁ@&@vsocs ABCD (&0 10.2) £ 508900, ©
& KD LrBck0 Sken) HHIre 15 0, HHBc
9 0. . TN HepFed Jod?

wr
9cm

1 C
BEs580 @ng) HEpFes = w0 werb oo oem

DEHO odo. Déx0 10.2

Bysanso @S
AHEHE eHezren
DHIPSHD 2328 Bl
AB=CD,

AD=BC

=AB + BC + CD + DA
=AB +BC + AB + BC
=2xAB+2xBC

=2 x(AB+BC)

=2 % (15 20. &. + 9 0. &.)
=2 x (24 20.8.)

= 48 20.%».

)

1%
gy
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18 20.5». 15 20.5».
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MENSURATION

Now, perimeter of the rectangular table cover
=2 x (length + breadth) =2 x 3 m+2m)=2x5m=10m
So, length of the lace required is 10 m.

Example 2 : An athlete takes 10 rounds of a rectangular park, 50 m long and
25 m wide. Find the total distance covered by him.

Solution : Length of the rectangular park = 50 m
Breadth of the rectangular park =25 m

Total distance covered by the athlete in one round will be the perimeter of
the park.

Now, perimeter of the rectangular park

= 2 x (length + breadth)=2 x (50 m + 25 m)

=2x75m=150m

So, the distance covered by the athlete in one round is 150 m.

Therefore, distance covered in 10 rounds = 10 x 150 m = 1500m

The total distance covered by the athlete is 1500 m.

T T T T T

Example 3 : Find the perimeter of a rectangle whose length and breadth are
150 cm and 1 m respectively.

Solution : Length = 150 cm 150 cm

Breadth = 1m = 100 cm
Perimeter of the rectangle 1 m I'm
= 2 x (length + breadth)
=2 x (150 cm + 100 cm)
=2 % (250 cm) =500 cm =5 m 150 em

Example 4 : A farmer has a rectangular field
of length and breadth 240 m and 180 m
respectively. He wants to fence it with 3
rounds of rope as shown in figure 10.4.
What is the total length of rope he must use?

Solution : The farmer has to cover three
times the perimeter of that field. Therefore,
total length of rope required is thrice its perimeter.

Perimeter of the field =2 x (length + breadth)
=2 x (240 m + 180 m)
=2x420m =840 m
Total length of rope required =3 x 840 m =2520 m

T T T T T T T T T T T T TR ATEI AT

I#llqllqil:lvlup-lEIEILI!QIQIF|E—

Fig 10.4
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MENSURATION

Example 5 : Find the cost of fencing a rectangular park of length 250 m and
breadth 175 m at the rate of ¥ 12 per metre.
Solution : Length of the rectangular park =250 m
Breadth of the rectangular park =175 m
To calculate the cost of fencing we require perimeter.
Perimeter of the rectangle =2 x (length + breadth)
=2 x (250 m + 175 m)
=2 % (425 m) =850 m
Cost of fencing 1m of park =3 12

w2
[

Therefore, the total cost of fencing the park
=% 12 x 850 =% 10200

10.2.2 Perimeter of regular shapes

Consider this example.

Biswamitra wants to put coloured tape all around a
square picture (Fig 10.5) of side 1m as shown. What will be
the length of the coloured tape he requires? £

Since Biswamitra wants to put the coloured tape all
around the square picture, he needs to find the perimeter
of the picture frame. Lm

Thus, the length of the tape required Fig 10.5

= Perimeter of square = Im+ I m+ 1Im+1m= 4m

Now, we know that all the four sides of a square are equal, therefore, in
place of adding it four times, we can multiply the length of one side by 4.
Thus, the length of the tape required =4 x I m =4 m
From this example, we see that

1m

u

Perimeter of a square = 4 x length of a side
Draw more such squares and find the perimeters.

T e e T e T e e e T e A T e T T T T T T TOT I

Irllqllqil:lvlup-lEIEILI!QIQIF|E—

Now, look at equilateral triangle (Fig 10.6) with each side
. . Q
equal to 4 cm. Can we find its perimeter? ™ %

Perimeter of this equilateral triangle = 4 +4 +4 cm
=3x4cm=12cm Tom
So, we find that Fig 10.6

Perimeter of an equilateral triangle = 3 x length of a side

What is similar between a square and an equilateral triangle? They are figures
having all the sides of equal length and all the angles of equal measure. Such
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MENSURATION

TI‘)’ These ) figures are known as regular closed figures. Thus, a
Find various objects = square and an equilateral triangle are regular closed
from your figures.
surroundings which You found that,
have regular shapes Perimeter of a square = 4 x length of one side
and find their Perimeter of an equilateral triangle = 3 x length
perimeters. of one side

So, what will be the perimeter of a regular
pentagon?

A regular pentagon has five equal sides.

Therefore, perimeter of a regular pentagon = 5 x length of one side and
the perimeter of a regular hexagon will be and of an octagon will
be

Example 6 : Find the distance travelled by Shaina if she takes three rounds of
a square park of side 70 m.

Solution : Perimeter of the square park =4 x length of a side =4 x 70 m =280 m

Distance covered in one round = 280 m e e L

Therefore, distance travelled in three rounds =3 x 280m = 840m Hf T
Example 7 : Pinky runs around a square field of side 75 m, Bob ;'" i X
runs around a rectangular field with length 160 m and breadth =~ —- ﬁ

105 m. Who covers more distance and by how much?

Solution : Distance covered by Pinky in one round = Perimeter of the square
=4 x length of a side
=4 x75m=300m

Distance covered by Bob in one round = Perimeter of the rectangle
= 2 % (length + breadth)
=2 x (160 m + 105 m)
=2x265m=>530m
Diftference in the distance covered =530 m — 300 m =230 m.
Therefore, Bob covers more distance by 230 m.

Example 8 : Find the perimeter of a regular pentagon with each side
measuring 3 cm.

Solution : This regular closed figure has 5 sides, each with a length of 3 cm.
Thus, we get
Perimeter of the regular pentagon =5 x 3 cm = 15 cm

Example 9 : The perimeter of a regular hexagon is 18 cm. How long is
its one side?
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Solution : Perimeter = 18 cm

A regular hexagon has 6 sides, so we can divide
the perimeter by 6 to get the length of one side.

One side of the hexagon =18 cm + 6 =3 cm

Therefore, length of each side of the regular (=
hexagon is 3 cm.

g—g £ L .\'- q-
g = %=—=<—— EXERCISE 10.1
E \";.'L-'\._—'——ﬁ.'a'-""
R % 1. Find the perimeter of each of the following figures :
=1 15 cm
= o
£ % - & >
B g g 23 cm o 5?0)
- = Scm
= w2
= s ) 15 cm
E (a) > g
."-"‘_i ©
= E 40 cm
_;_ )
o £
_E 1cm 4cm
m —
_E g w - 3cm
= = : g B
5 E N
£ 2 cm 3cm
_E 3 cm 2 cm A 4cm
— 1cm
o = g w g g
~E S R yE— dom
= 3 cm
'ﬁ_é 1cm
= 4 cm lem
_E
= £ )

2. Thelid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape.
What is the length of the tape required?

3. A table-top measures 2 m 25 cm by 1 m 50 cm. What is the perimeter of the
table-top?

4. What is the length of the wooden strip required to frame a photograph of length and
breadth 32 cm and 21 cm respectively?

5. A rectangular piece of land measures 0.7 km by 0.5 km. Each side is to be fenced
with 4 rows of wires. What is the length of the wire needed?



FS28

PGS SepFod = 18 0.8
a8 (8% a’qtfp?)% 8 6 gherenotrom, sm@ 2.8 ghaso
S EPEHD SPoso EBH DHepEosD 6 3@&0655&@.
(B a’qc‘fga)& @Dé&aﬁé gH=o = 18 20.8. + 6 = 3 Do.&» _
©OtBe, (K55S 0%, (58 thwo A LD 3 20D (=

f\& \ egrsdo 10.1

- I T
e e—— =

1. B33 Ko (D850 Twy) $oepSod BIod.:

15 cm
S,
—_ O ~
(e}
8 23 cm 2 S?o,
Scm
§ ) 15 cm
(@) " Q
~ 2
(©)
40 cm
®)
1 cm 4 cm
1 cm
= w 3cm
Q
< |8 §| |8
on N
2cm 3 cm
3cm 2cm 4 4 cm
N - B Il
3em 8 o < \/ 4cm
1cm
4 cm 1 cm
(H

2. gheren 40 0.8, 10 0.8 aod égﬁeﬁ:&@@é@ 2 @) SomdHer 58
Soepeo OBJEFI BF ToE) EH Jo?
3. e88wSgriio 2 25 0. & x 18 50 0. o FosH SO aod. Tend
D grrfo GwE) rﬁoe)g?oé D0&?
4. PEH 200 Sen) SIr 32 0.8 HBao 21 0. e Ko el P T
(B0 B8 sHeRS Y 5O Tws) PEH Jog?
5. 5&513{5&6@@&5@ grSesen 0.7 8.8 x 0.5 8.8, wond (18 3D 4 SHde Qéée 117
E0B S, oBIEI JLo T KD Jos?
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6. Find the perimeter of each of the following shapes :

(a) A triangle of sides 3 cm, 4 cm and 5 cm.

(b) An equilateral triangle of side 9 cm.

(c) Anisosceles triangle with equal sides 8 cm each and third side 6 cm.

Find the perimeter of a triangle with sides measuring 10 cm, 14 cm and 15 cm.

Find the perimeter of a regular hexagon with each side measuring 8 m.

O ® N

Find the side of the square whose perimeter is 20 m.

w2
[

L

10. The perimeter of a regular pentagon is 100 cm. How long is its each side?

11. A piece of string is 30 cm long. What will be the length of each side if the string is used
to form:

(a) asquare? (b) anequilateral triangle?  (c) aregular hexagon?

12. Two sides of a triangle are 12 cm and 14 cm. The perimeter of the triangle is
36 cm. What is its third side?

13. Find the cost of fencing a square park of side 250 m at the rate of ¥ 20 per metre.

14. Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the
rate of T 12 per metre.

15. Sweety runs around a square park of side 75 m. Bulbul runs around a rectangular
park with length 60 m and breadth 45 m. Who covers less distance?

16. What is the perimeter of each of the following figures? What do you infer from
the answers?

T e e T e T e e e T e A T e T T T T T T TOT I
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25 cm 30 em
£ % 5 S
(@] o o o
25 cm
(@) 40 cm
g =
[¢]
= 8
40 cm
(b)
17. Avneet buys 9 square paving slabs,

1
each with a side of 5 m He lays

them in the form of a square.
(a) What is the perimeter of his
arrangement [Fig 10.7(1)]?
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MENSURATION

(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is
the perimeter of her arrangement [(Fig 10.7 (ii)]?

(c) Which has greater perimeter?

(d) Avneet wonders if there is a way of getting an even greater perimeter. Can you find a

way of doing this? (The paving slabs must meet along complete edges i.e. they cannot
be broken.)

10.3 Area

Look at the closed figures (Fig 10.8) given below. All of them occupy some
region of a flat surface. Can you tell which one occupies more region?

(a) (b) (@) (b)

. . s
(@
_"4_4'_’.4;_1':12-‘3:__.._ *

() (a) (b)
Fig 10.8

The amount of surface 7
enclosed by a closed figure is /\\ w
called its area.

So, can you tell, which of the . /Z
above figures has more area?

Now, look at the adjoining
figures of Fig 10.9 :

Which one of these has
larger area? It is difficult to tell
just by looking at these figures. So, what do you do?

Place them on a squared paper or graph paper where every square measures
I cm x 1 cm.

Make an outline of the figure.

Look at the squares enclosed by the figure. Some of them are completely
enclosed, some half, some less than half and some more than half.

The area is the number of centimetre squares that are needed to cover it.

T T T T T

(@ ()
Fig 10.9

T T T T T T T T T T T T TR ATEI AT
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MENSURATION

But there 1s a small problem : the squares do not always fit exactly into the
area you measure. We get over this difficulty by adopting a convention :
o The area of one full square is taken as 1 sq unit. If it is a centimetre
square sheet, then area of one full square will be 1 sq cm.
« Ignore portions of the area that are less than half a square.

o Ifmore than half of a square is in a region, just count it as one square.

. ) 1 .
o Ifexactly half the square is counted, take its area as — sq unit.

=
ﬁ—g )
—H Such a convention gives a fair estimate of the desired area.
- = Example 10 : Find the area of the shape shown in the figure 10.10.
_g Solution : This figure is made up of line-segments. = : = @ @ " =
w = Moreover, it is covered by full squares and half : ™" e
_E squares only. This makes our job simple. SR
= (1) Fully-filled squares =3
o = (i1) Half-filled squares=3 70
= Area covered by full squares
%: S3lsqunits = 3squnits ol
~ E Total area = 45 sq units. Fig 10.10
5 E Example 11 : By counting squares, estimate the area of the figure 10.9 b.
_E Soultion : Make an outline of the figure on a graph sheet. (Fig 10.11)
© Covered Number| Area
_E area estimate
= B (sq units) /—f—\fw
o E
= (1) Fully-filled squares 11 11
- E
= = 1
—E (i) Half-filled squares 3 3 x 5
PE [Gi) More than |
'E;_E half-filled squares 7 7 Fig 10.11
=
£ |(iv) Less than Try TheseQ)
= B half-filled squares 5 0 .
= E 1. Draw any circle on a graph

sheet. Count the squares

and use them to estimate

How do the squares cover it? the area of the circular
region.

2. Trace shapes of leaves,
flower petals and other
such objects on the graph
paper and find their areas.

1 1
Total area =11 +3 XE +7= 195 sq units.

Example 12 : By counting squares, estimate
the area of the figure 10.9 a.

Soultion : Make an outline of the figure on a
graph sheet. This is how the squares
cover the figure (Fig 10.12).
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MENSURATION

Covered Number Area
area estimate
(1) Fully-filled squares 1 1

(i) Half-filled squares = =
(1) More than

half-filled squares 7 7
3= (iv) Less than S
- i il e 9 OO ittt
| Total area =1 + 7 = 8 sq units. Fig 10.12

S < . EXERCISE 10.2

= e

—

1. Find the areas of the following figures by counting square:

T T T T T

Ilp1-lq-l]qi-I1II‘.I‘::|I-IEIEIléllgj_gl_lrl

T T T T T T T T T T T T TR ATEI AT

10.3.1 Area of a rectangle

With the help of the squared paper, can we tell, what will be the area of a rectangle
whose length 1s 5 cm and breadth is 3 cm?

Draw the rectangle on a graph paper having 1 cm x 1 cm squares
(Fig 10.13). The rectangle covers 15 squares completely.
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MENSURATION

..................................................

The area of the rectangle = 15 sq cm

which can be written as 5 x 3 sq cmie. ... Semi
(Iength x breadth). : A :
. O OO SO SO § g
3 :
E Fig 10.13
= The measures of the sides
= Length Breadth Area
£ of some of the rectangles are
w — given. Find their areas by 3 cm 4em | -
E placing them on a graph paper 7 em sem |
= and counting the number
= of square. Scm 3em | -
= What do we infer from this?

Try These Q)

1. Find the area of
the floor of your

We find,
Area of a rectangle = (length x breadth)

Without using the graph paper, can we find the area classroom.

of a rectangle whose length is 6 cm and breadthis 2. Find the area of
4cm? any one door in
Yes, it is possible. your house.
What do we infer from this?

We find that,

Area of the rectangle = length x breadth = 6 cm x 4 cm = 24 sq cm.

10.3.2 Area of a square

...........................................

Let us now consider a square of side 4 cm

T T T T T T T T T T T T TR ATEI AT

Ilp1-lq-hIq-l-l1lt.lc:l|l-lEIEIléllg_l_glIFI

(Fig 10.14). R e SR
What will be its area?
If we place it on a centimetre graph , ............ . ...... ...... . .............
paper, then what do we observe? >
It covers 16 squares i.e. the area of the +**[+++++5 et g

square = 16 sqcm =4 x 4 sq cm
Calculate areas of few squares by assuring
length of one side of squares by yourself.
Find their areas using graph

paperS. ‘.. ....... :
Fig 10.14

e R I e N Rl LR
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MENSURATION

What do we infer from this?
We find that in each case,

Area of the square = side x side

You may use this as a formula in doing problems.

Example 13 : Find the area of a rectangle whose length and breadth are

12 cm and 4 cm respectively.

w2
[

Solution : Length of the rectangle =12 cm
Breadth of the rectangle =4 cm
Area of the rectangle = length x breadth
=12cm x4 cm = 48 sq cm.

-3

Example 14 : Find the area of a square plot of side 8 m.

Solution : Side of the square =8 m
Area of the square = side x side
=8m x8m= 64 sqm.

Example 15 : The area of a rectangular piece of cardboard is 36 sq cm and its
length 1s 9 cm. What is the width of the cardboard?

Solution : Area of the rectangle =36 sq cm
Length =9 cm
Width = ?
Area of a rectangle = length x width

Area 36

So, width = Length =9 4 cm

Thus, the width of the rectangular cardboard is 4 cm.

Example 16 : Bob wants to cover the floor of a room 3 m wide and 4 m long
by squared tiles. If each square tile is of side 0.5 m, then find the number of
tiles required to cover the floor of the room.

T e e T e T e e e T e A T e T T T T T T TOT I

Ilp1-lq-hIq-l-l1lt.lc:l|l-lEIEIléllg.l.g|IFI

Solution : Total area of tiles must be equal to the area of the floor of the room.
Length of the room =4 m
Breadth of the room =3 m
Area of the floor =length x breadth
=4mx3m=12sqm .
Area of one square tile = side x side " =i
=0.5m x 0.5m &
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MENSURATION

=0.25sqm

Area of the floor 12 1200

Number of tiles required = Area of one fle 025 25 48tiles.

Example 17 : Find the area in square metre of a piece of cloth 1m 25 cm wide
and 2 m long.

Solution : Length of the cloth = 2 m
Breadth ofthecloth= ITm25cm=1m+0.25m=125m
(since 25 cm = 0.25m)
Area of the cloth = length of the cloth x breadth of the cloth
= 2mx 1.25m=2.50 sqm

" EXERCISE 10.3

1. Find the areas of the rectangles whose sides are :
(@ 3cmand4cm (b)) 12mand2lm (¢) 2kmand3km  (d) 2mand 70 cm
2. Find the areas of the squares whose sides are :
(a) 10cm (b) 14 cm (¢) Sm
. Thelength and breadth of three rectangles are as given below :
(@ 9mand6m  (b) 17mand3m (c) 4mand 14m
Which one has the largest area and which one has the smallest?

(98]

4. Thearea of a rectangular garden 50 mlong is 300 sq m. Find the width of the garden.

5. What is the cost of'tiling a rectangular plot of land 500 m long and 200 m wide at the
rate of ¥ 8 per hundred sq m.?

6. Atable-top measures 2 mby 1 m 50 cm. What is its area in square metres?

7. Aroomis 4 mlong and 3 m 50 cm wide. How many square metres of carpet is
needed to cover the floor of the room?

8. Aflooris 5 mlongand 4 m wide. A square carpet of sides 3 m s laid on the floor. Find
the area of the floor that is not carpeted.

9. Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4
m wide. What is the area of the remaining part of the land?

10. By splitting the following figures into rectangles, find their areas

(The measures are given in centimetres). 5
(a) 31 (b)
2
2
3 3
2
4 4
3
1 1
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MENSURATION

11. Split the following shapes into rectangles and find their areas. (The measures are
given in centimetres)

2 7

12 7 7

10 7

(a) (b)

12. How many tiles whose length and breadth are 12 cm and 5 cm respectively will be
needed to fit in a rectangular region whose length and breadth are respectively:
(a) 100 cmand 144 cm (b) 70 cm and 36 cm.

A challenge!

T T T T T

On a centimetre squared paper, make as many rectangles as you can, such that
the area of the rectangle is 16 sq cm (consider only natural number lengths).

(a) Which rectangle has the greatest perimeter?
(b) Which rectangle has the least perimeter?

If you take a rectangle of area 24 sq cm, what will be your answers?
Given any area, 1s it possible to predict the shape of the rectangle with the
greatest perimeter? With the least perimeter? Give example and reason.

What have we discussed?
1. Perimeter is the distance covered along the boundary forming a closed figure
when you go round the figure once.
2. (a) Perimeter of a rectangle = 2 x (length + breadth)
(b) Perimeter of a square = 4 x length of its side
(c) Perimeter of an equilateral triangle = 3 x length of a side
3. Figures in which all sides and angles are equal are called regular closed figures.

The amount of surface enclosed by a closed figure is called its area.

T T T T T T T T T T T T TR ATEI AT

I#llqllqil:lvlup-lEIEILI!QIQIF|E—

5. To calculate the area of a figure using a squared paper, the following conventions are
adopted :

(a) Ignore portions of the area that are less than half'a square.
(b) If more than half'a square is in a region. Count it as one square.

1
(c) Ifexactly half'the square is counted, take its area as 5 sd units.

6. (a) Areaofarectangle =length x breadth
(b) Area of a square = side x side
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Chapter 11

Introduction

Our study so far has been with numbers and shapes. We have learnt numbers,
operations on numbers and properties of numbers. We applied our knowledge
of numbers to various problems in our life. The branch of mathematics in
which we studied numbers is arithmetic. We have also learnt about figures in
two and three dimensions and their properties. The branch of mathematics in
which we studied shapes is geometry. Now we begin the study of another
branch of mathematics. It is called algebra.

The main feature of the new branch which we are going to study is the use
of letters. Use of letters will allow us to write rules and formulas in a general
way. By using letters, we can talk about any number and not just a particular
number. Secondly, letters may stand for unknown quantities. By learning
methods of determining unknowns, we develop powerful tools for solving
puzzles and many problems from daily life. Thirdly, since letters stand for
numbers, operations can be performed on them as on numbers. This leads to
the study of algebraic expressions and their properties.

You will find algebra interesting and useful. It 1s very useful in solving
problems. Let us begin our study with simple examples.

11.2 Matchstick Patterns

Ameena and Sarita are making patterns with matchsticks. They decide to make
simple patterns of the letters of the English alphabet. Ameena takes two
matchsticks and forms the letter L as shown in Fig 11.1 (a).
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® ® Fig 1.1 ©

Then Sarita also picks two sticks, forms another letter L and puts it next to
the one made by Ameena [Fig 11.1 (b)].

Then Ameena adds one more L and this goes on as shown by the dots in
Fig 11.1 (c).

Their friend Appu comes in. He looks at the pattern. Appu always asks
questions. He asks the girls, “How many matchsticks will be required to make
seven Ls”? Ameena and Sarita are systematic. They go on forming the patterns
with 1L, 2Ls, 3Ls, and so on and prepare a table.

Table 1
Number of | 1 2 3 4 5 6 7 8
Ls formed
Number of | 2 4 6 8 10| 12| 14 | 16
matchsticks
required

Appu gets the answer to his question from the Table 1; 7Ls require 14
matchsticks.
, While writing the table, Ameena realises that the number
v%?% of matchsticks required is twice the number of Ls formed.

'%r?fi: . Number of matchsticks required = 2 x number of Ls.
. 'f";_.gj’b::?f’ For convenience, let us write the letter » for the number of

Ls. If one L 1s made, n = 1; if two Ls are made,
n = 2 and so on; thus, n can be any natural
number 1, 2, 3, 4, 5, .... We then write, Number
of matchsticks required = 2 x n.

Instead of writing 2 x n, we write 2n. Note
that 27 is same as 2 x n.

Ameena tells her friends that her rule gives
the number of matchsticks required for
forming any number of Ls.

Thus, For n =1, the number of matchsticks required =2 x 1 =2
For n = 2, the number of matchsticks required =2 x 2 =4

For n = 3, the number of matchsticks required =2 x 3 = 6 etc.
These numbers agree with those from Table 1.
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Sarita says, “The rule is very powerful! Using the rule, I can say how many
matchsticks are required to form even 100 Ls. I do not need to draw the pattern
or make a table, once the rule 1s known”.

Do you agree with Sarita?

11.3 The Idea of a Variable

In the above example, we found a rule to give the number of matchsticks
required to make a pattern of Ls. The rule was :

Number of matchsticks required = 2n

Here, 7 is the number of Ls in the pattern, and » takes values 1, 2, 3, 4,.... Let
us look at Table 1 once again. In the table, the value of » goes on changing
(increasing). As a result, the number of matchsticks required also goes on
changing (increasing).

n is an example of a variable. Its value is not fixed; it can take any value
1,2,3,4,...We wrote the rule for the number of matchsticks required
using the variable n.

The word ‘variable’ means something that can vary, i.e. change. The value
of a variable is not fixed. It can take different values.

We shall look at another example of matchstick patterns to learn more
about variables.

11.4 More Matchstick Patterns

Ameena and Sarita have become quite interested in matchstick patterns. They
now want to try a pattern of the letter C. To make one C, they use three
matchsticks as shown in Fig. 11.2(a).

[ LT 1]

(a) (b) ()
Fig 11.2

Table 2 gives the number of matchsticks required to make a pattern of Cs.

Table 2
Number 1 2 (3|4 5 6 7 8
of Cs formed
Number 3|1 6|9|12]15] 18] 21/ 24
of matchsticks
required
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Can you complete the entries left blank in the table?

Sarita comes up with the rule :
Number of matchsticks required = 3n

She has used the letter » for the number of Cs; 7 1s a variable taking on values
1,2,3,4, ..

Do you agree with Sarita ?

Remember 37 is the same as 3 x n.

Next, Ameena and Sarita wish to make a pattern of Fs. They make one F
using 4 matchsticks as shown in Fig 11.3(a).

(a) (b) (c)
Fig 11.3

Can you now write the rule for making patterns of F?

Think of other letters of the alphabet and other shapes that can be made
from matchsticks. For example, U (LI), V (\/), triangle (/\), square () etc.
Choose any five and write the rules for making matchstick patterns with them.

11.5 More Examples of Variables

We have used the letter n to show a variable. Raju asks, “Why not m”?
There 1s nothing special about 7, any letter can be used.

One may use any letter as m, [, p, x, y, 7 etc. to show
a variable. Remember, a variable is a number which
does not have a fixed value. For example, the number
5 or the number 100 or any other given number is
not a variable. They have fixed values. Similarly, the
number of angles of a triangle has a fixed value i.e. 3.
It is not a variable. The number of corners of a
quadrilateral (4) is fixed; it is also not a variable.
But 7 in the examples we have looked is a variable.
It takes on various values 1, 2, 3, 4, ... .
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Let us now consider variables in a more
familiar situation.

Students went to buy notebooks from the
school bookstore. Price of one notebook is
¥ 5. Munnu wants to buy 5 notebooks, Appu wants
to buy 7 notebooks, Sara wants to buy 4
notebooks and so on. How much money should
a student carry when she or he goes to the
bookstore to buy notebooks?

This will depend on how many notebooks the student wants to buy. The
students work together to prepare a table.

Table 3
Number of| 1 2 3 4 5 | ... m | ...
notebooks
required
Total cost 5 10 15 20 25 | ... Sm | ...
n rupees

The letter m stands for the number of notebooks a student wants to buy; m
1s a variable, which can take any value 1, 2, 3, 4, ... . The total cost of m
notebooks is given by the rule :
The total cost in rupees =5 x number of note books required
=5m
I[f Munnu wants to buy 5

notebooks, then takingm =5, wesay — — — — — — — — _— —

that Munnu should carry — — — — — — — T— T —

¥ 5 x 5 or % 25 with him to the school f\ e 29 g Q G & g
bookstore. “%J; Ay w |

Let us take one more example. For j;> L L B A d
the Republic Day celebration in the % g & 7 P
school, children are going to perform v;gi ) R @ H s
mass drill in the presence of the chief 2. 2 &~ L 0L 4 jL A :
guest. They stand 10 i a row (Fig % | o @ A
11.4). How many children can there %A ‘ Aq '_3 i . Hﬂ i) w
be in the drill? koA At &L

The number of children will

Fig 11.4

depend on the number of rows. If
there i1s 1 row, there will be 10 children. If there are 2 rows, there will be
2 x 10 or 20 children and so on. If there are » rows, there will be 107 children
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in the drill; here, 7 is a variable which stands for the number of rows and so takes
onvalues 1,2, 3,4, ....

In all the examples seen so far, the variable was multiplied by a number.
There can be different situations as well in which numbers are added to or
subtracted from the variable as seen below.

Sarita says that she has 10 more marbles in her collection than Ameena. If
Ameena has 20 marbles, then Sarita has 30. If Ameena has 30 marbles, then
Sarita has 40 and so on. We do not know exactly how many marbles Ameena
has. She may have any number of marbles.

But we know that, Sarita's marbles = Ameena's marbles + 10.

We shall denote Ameena’s marbles by the letter x. Here, x is a variable,
which can take any value 1, 2, 3, 4,...,10,... ,20,... ,30,... . Using x, we write
Sarita's marbles = x + 10. The expression (x + 10) is read as ‘x plus ten’. It
means 10 added to x. If x 1s 20, (x + 10) 15 30. If x is 30, (x + 10) is 40 and so on.

The expression (x + 10) cannot be simplified further.

Do not confuse x + 10 with 10x, they are different.

In 10x, x 1s multiplied by 10. In (x + 10), 10 is added to x.
We may check this for some values of x.

For example,

Ifx=2,10x=10x2=20andx+ 10=2+ 10 = 12.
If x =10, 10x =10 x 10 = 100 and x + 10 = 10 + 10 = 20.

Raju and Balu are brothers. Balu is younger than Raju by 3
years. When Raju is 12 years old, Balu is 9 years old. When
Raju 1s 15 years old, Balu is 12 years old. We do not know
Raju’s age exactly. It may have any value. Let x denote Raju’s
age in years, x is a variable. If Raju’s age in years is x, then
Balu’s age in years is (x — 3). The expression (x — 3) is read as

x minus three. As you would expect, when x is 12,
(x—3)1s 9 and when x 1s 15, (x — 3) 1s 12.

. EXERCISE 11.1

1. Find the rule which gives the number of matchsticks required to make the following
matchstick patterns. Use a variable to write the rule.

(a) Apatternofletter Tas |
(b) A patternofletter Zas /
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10.

1.

. Radha is drawing a dot Rangoli (a beautiful pattern

(c) Apatternofletter Uas |_|
(d) A pattern of letter Vas \ /
(e) A pattern of letter E as |=
(f) A pattern of letter S as '=,

(g) A pattern of letter A as =:=

We already know the rule for the pattern of letters L, C and F. Some of the
letters from Q.1 (given above) give us the same rule as that given by L. Which
are these? Why does this happen?

Cadets are marching in a parade. There are 5 cadets in a row. What is the rule
which gives the number of cadets, given the number of rows? (Use n for the
number of rows.)

Ifthere are 50 mangoes in a box, how will you write the total number of mangoes
in terms of the number of boxes? (Use b for the number of boxes.)

The teacher distributes 5 pencils per student. Can you tell how many pencils are
needed, given the number of students? (Use s for the number of students.)

A bird flies 1 kilometer in one minute. Can you express the distance covered by
the bird in terms of its flying time in minutes? (Use ¢ for flying time in minutes.)

of lines joining dots) with chalk powder. She has 9 dots
in a row. How many dots will her Rangoli have for » rows?
How many dots are there if there are 8 rows? If there
are 10 rows?

Leela is Radha's younger sister. Leela is 4 years younger
than Radha. Can you write Leela's age in terms of
Radha's age? Take Radha's age to be x years. Fig11.5
Mother has made laddus. She gives some laddus to guests and family members; still
5 laddus remain. If the number of laddus mother gave away is /, how many laddus did
she make?
Oranges are to be transferred from larger boxes into smaller boxes. When a
large box is emptied, the oranges from it fill two smaller boxes and still 10
oranges remain outside. If the number of oranges in a small box are taken to be
x, what is the number of oranges in the larger box?
(a) Look at the following matchstick pattern of squares (Fig 11.6). The squares
are not separate. Two neighbouring squares have a common matchstick.
Observe the patterns and find the rule that gives the number of matchsticks

O eI,

(a) (b) ©
Fig11.6
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ALGEBRA

in terms of the number of squares. (Hint : If you remove the vertical stick at the end, you
will get a pattern of Cs.)

(b) Fig 11.7 gives a matchstick pattern of triangles. As in Exercise 11 (a) above, find

the general rule that gives the number of matchsticks in terms of the number of

triangles.
(a) (b) (©) (d)

Fig 11.7

What have we discussed?

1. We looked at patterns of making letters and other shapes using matchsticks. We
learnt how to write the general relation between the number of matchsticks required
for repeating a given shape. The number of times a given shape is repeated varies; it
takes onvalues 1,2,3,... . It is a variable, denoted by some letter like 7.

g )yt

2. Avariable takes on different values, its value is not fixed. The length of a square can
have any value. It is a variable. But the number of angles of a triangle has a fixed value
3. Itis not a variable.

3. We may use any letter n, [, m, p, x, y, z, etc. to
show a variable.

4. Avariable allows us to express relations in any
practical situation.

5. Variables are numbers, although their value is not
fixed. We can do the operations of addition,
subtraction, multiplication and division on them
just as in the case of fixed numbers. Using different
operations we can form expressions with variables

like x—3, x+3, 2n, Sm, §,2y+3, 3/-5, etc.

IR gy
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MATHEMATICS

Ratio 3nd
Proportion

M T T T T T e e T e T T T T T T

Introduction

In our daily life, many a times we compare two
quantities of the same type. For example, Avnee and
Shari collected flowers for scrap notebook. Avnee
collected 30 flowers and Shari collected 45 flowers.
So, we may say that Shari collected 45 — 30 = 15
flowers more than Avnee.

Also, if height of Rahim is 150 cm and that of
Avnee is 140 cm then, we may say that the height of
Rahim is 150 cm — 140 cm = 10 cm more than Avnee.
This is one way of comparison by taking difference.

If we wish to compare the lengths of an ant and a
grasshopper, taking the difference does not express
the comparison. The grasshopper’s length, typically
4 cm to 5 cm is too long as compared to the ant’s
length which is a few mm. Comparison will be better
if we try to find that how many ants can be placed
one behind the other to match the length of
grasshopper. So, we can say that 20 to 30 ants have
the same length as a grasshopper.

Consider another example.

Costofacaris¥2,50,000 and that of a motorbike 1s ¥ 50,000. If we calculate
the difference between the costs, it is ¥ 2,00,000 and if we compare by division;

2,50,000 _ 5
1

1€ 750,000
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MATHEMATICS

We can say that the cost of the car is five times the cost of the motorbike.
Thus, in certain situations, comparison by division makes better sense than
comparison by taking the difference. The comparison by division is the Ratio.
In the next section, we shall learn more about ‘Ratios’.

12.2 Ratio

Consider the following:

Isha’s weight 1s 25 kg and her father’s weight is 75 kg. How many times
Father’s weight is of Isha’s weight? It is three times.

Costofapenis? 10 and cost of a pencil is% 2. How many times the cost of a pen
that of a pencil? Obviously it is five times.

I»lf_lo

4

|

In the above examples, we compared the two quantities in terms of
‘how many times’. This comparison is known as the Ratio. We denote
ratio using symbol ¢:’

Consider the earlier examples again. We can say,

. . . 75
The ratio of father’s weight to Isha’s weight= — = — =3:1

5

3
1

. .10
The ratio of the cost of a pen to the cost of a pencil = 51 5:1

Let us look at this problem.
In a class, there are 20 boys and 40 girls. What 1s the ratio of
(a) Number of girls to the total number of students.
(b) Number of boys to the total number of students.
TI’)’ These O First we need to find the total number of students,

1. Inaclass, there are which s,

IR gy

20 boys and 40
girls. What is the
ratio of the number
of boys to the
number of girls?

Ravi walks 6 km
in an hour while
Roshan walks
4 km in an hour.
What is the ratio
of the distance
covered by Ravi
to the distance
covered by Roshan?

Number of girls + Number of boys =20 + 40 = 60.
Then, the ratio of number of girls to the total

number of students is 2 = 223
60 3

Find the answer of part (b) in the similar manner.

Now consider the following example.

Length of a house lizard is 20 cm and the length of
a crocodile 1s 4 m.

“I am 5
times bigger
than you”, says
the lizard. As %
we can see this

I am bigger
You are
smaller
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MATHEMATICS

1s really absurd. A lizard’s length cannot be 5 times of the length of a crocodile.
So, what 1s wrong? Observe that the length of the lizard is in centimetres and
length of the crocodile is in metres. So, we have to convert their lengths into
the same unit.

Length of the crocodile =4 m =4 x 100 = 400 cm.

Therefore, ratio of the length of the crocodile to the length of the lizard

Two quantities can be compared only if they are in the same unit.
Now what is the ratio of the length of the lizard to the length of the crocodile?

It 1s £=L=1:20.
400 20

Observe that the two ratios 1 : 20 and 20 : 1 are different from each other.
The ratio 1 : 20 is the ratio of the length of the lizard to the length of the
crocodile whereas, 20 : 1 is the ratio of the length of the crocodile to the
length of the lizard.

Now consider another example. TI’)’ These O

Length of a pencil is 18 cm and its
diameter is 8 mm. What is the ratio of
the diameter of the pencil to that of its

1. Saurabh takes 15 minutes to reach
school from his house and Sachin
takes one hour to reach school

length? Since the length and the from his house. Find the ratio of

diameter of the pencil are given in the time taken by Saurabh to the

different units, we first need to convert time taken by Sachin.

them into same unit. 2. Cost of a toffee is 50 paise and
Thus, length of the pencil = 18 cm cost of a chocolate isZ 10. Find the

=18 x 10 mm = 180 mm. ratio of the cost of a toffee to the
The ratio of the diameter of the cost of a chocolate.

pencil to that of the length of the pencil = 3+ In @ school, there were 73
holidays in one year. What is the

2:45. ratio of the number of holidays

. M r)
Think of some to the number of days in one year?

more  situations
where you compare
two quantities of same type in different units.

We use the concept of ratio in many situations of our
daily life without realising that we do so.

Compare the drawings A and B. B looks more natural
than A. Why?
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The legs in the picture A are too long in comparison to the other body parts.
This is because we normally expect a certain ratio of the length of legs to the
length of whole body.

Compare the two pictures of a pencil. Is the
first one looking like a full pencil? No.

Why not? The reason 1s that the thickness and \
the length of the pencil are not in the correct ratio.

Same ratio in different situations :

Consider the following :
® Length of aroom is 30 m and its breadth i1s 20 m. So, the ratio of length of

the room to the breadth of the room = % = % =3:2

® There are 24 girls and 16 boys going for a picnic. Ratio of the number of

girls to the number of boys = % =%=3:2

The ratio in both the examples 1s 3 : 2.
® Note the ratios 30 : 20 and 24 : 16 in lowest form are same as 3 : 2. These
are equivalent ratios.

® Can you think of some more examples having the ratio 3 : 2?

It 1s fun to write situations that give rise to a certain ratio. For example,
write situations that give the ratio 2 : 3.

® Ratio of the breadth of a table to the length of the table is 2 : 3.
® Sheena has 2 marbles and her friend Shabnam has 3 marbles.

Then, the ratio of marbles that Sheena and Shabnam haveis 2 : 3.
Can you write some more situations for this ratio? Give any ratio to your
friends and ask them to frame situations.

Ravi and Rani started a business and invested
money in the ratio 2 : 3. After one year the total
profit was % 4,00,000.

Ravi said “we would divide it equally”, Rani
said “I should get more as [ have invested more”.

It was then decided that profit will be divided
in the ratio of their investment.

40,000 Here, the two terms of the ratio 2 : 3 are 2

and 3.

Sum of these terms =2 +3 =35

What does this mean?

This means if the profit is T 5 then Ravi should get T 2 and Rani should get
Z 3. Or, we can say that Ravi gets 2 parts and Rani gets 3 parts out of the 5 parts.
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MATHEMATICS

2 3
1.e., Ravi should get 3 of the total profit and Rani should get 3 of the total

profit.
If the total profit were ¥ 500

2
Ravi would get? 3 500 =% 200

IR gy

3
and Rani would get 3" 500=% 300

Now, if the profit were ¥ 4,00,000 could you find the share of each?

2
Ravi1’s share =3 e 4,00,000 =% 1,60,000

3
And Rani’s share =% 3 4,00,000 =% 2,40,000

Can you think of some more examples where you have to divide a number
of things in some ratio? Frame three such examples and ask your friends to
solve them.

Let us look at the kind of problems we have solved so far.

Try TheseQ
L.

Find the ratio of number of notebooks to the number of
books in your bag.

2. Find the ratio of number of desks and chairs in your
classroom.

3. Find the number of students above twelve years of age in your class.
Then, find the ratio of number of students with age above twelve years
and the remaining students.

4. Find the ratio of number of doors and the number of windows in your
classroom.

5. Draw any rectangle and find the ratio of its length to its breadth.

Example 1 : Length and breadth of a rectangular field are 50 m and 15 m
respectively. Find the ratio of the length to the breadth of the field.

Solution : Length of the rectangular field = 50 m
Breadth of the rectangular field = 15 m
The ratio of the length to the breadth is 50 : 15
50 50+5 10
i i —=——=—=10:3
The ratio can be written as 5-15:5 " 3
Thus, the required ratio 1s 10 : 3.
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Example 2 : Find the ratio of 90 cm to 1.5 m.

Solution : The two quantities are not in the same units. Therefore, we have to
convert them into same units.

I.5m=15x%100cm= 150 cm.

Therefore, the required ratio 1s 90 : 150.

90 90x30 _3

150 150%30 5
Required ratio 1s 3 : 5.

Example 3 : There are 45 persons working in an office. If the number of
females 1s 25 and the remaining are males, find the ratio of

(a) The number of females to number of males.

(b) The number of males to number of females.

Solution : Number of females = 25
Total number of workers = 45
Number of males =45 — 25 =20
Therefore, the ratio of number of females to the number of males

=25:20=5:4
And the ratio of number of males to the number of females
=20:25=4:5.

(Notice that there is a difference between the two ratios 5 : 4 and 4 : 5).

Example 4 : Give two equivalent ratios of 6 : 4.

6 6x2 12
lution : Ratio6 : 4=—-= —— = —,
Solution : Ratio 1 1x2 3
Therefore, 12 : 8 1s an equivalent ratio of 6 : 4
6 6x2 3

Similarly, the ratio 6 : 4 = 1 1 >

So, 3:2 1s another equivalent ratio of 6 : 4.
Therefore, we can get equivalent ratios by multiplying or dividing the
numerator and denominator by the same number.

Write two more equivalent ratios of 6 : 4.

Example 5 : Fill in the missing numbers :

14 [] 6

21 3 []
Solution : In order to get the first missing number, we consider the fact that
21 =3 x7.1.e. when we divide 21 by 7 we get 3. This indicates that to get the
missing number of second ratio, 14 must also be divided by 7.

When we divide, we have, 14 +7=2
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Hence, the second ratio is % .

Similarly, to get third ratio we multiply both terms of second ratio by 3.
(Why?)

. .. 6
Hence, the third ratio is —

14 [2] 6

TR E [These are all equivalent ratios. ]

Example 6 : Ratio of distance of the school from Mary’s home to the distance

of the school from John’s home is 2 : 1.

(a) Who lives nearer to the school?

(b) Complete the following table which shows some possible distances that
Mary and John could live from the school.

Therefore

Distance from Mary’s home to school (in km.) | 10 4

Distance from John’s home to school (in km.) 5 4 3 1

(c) If the ratio of distance of Mary’s home to the distance of Kalam’s home
from school is 1 : 2, then who lives nearer to the school?

Solution : (a) John lives nearer to the school (As the ratio1s 2 : 1).

(b)

Distance from Mary’s home to school (in km.) | 10 8 4 6 2

Distance from John’s home to school (in km.) 5 4 2 3 1

(c) Since the ratio 1s 1 : 2, so Mary lives nearer to the school.
Example 7 : Divide % 60 in the ratio 1 : 2 between Kriti and Kiran.

Solution : The two parts are 1 and 2.

Therefore, sum of the parts=1+2 = 3.

This means if there are % 3, Kriti will get % 1 and Kiran will getZ 2. Or, we
can say that Kriti gets 1 part and Kiran gets 2 parts out of every 3 parts.

.. 1
Therefore, Kriti’s share = §X6O =% 20

. 2
And Kiran’s share = §><60 =340.
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. EXERCISE 12.1

There are 20 girls and 15 boys in a class.
(a) What is the ratio of number of girls to the number of boys?
(b) What is the ratio of number of girls to the total number of students in the class?

Out of 30 students in a class, 6 like football,
12 like cricket and remaining like tennis. Find

the ratio of %
(a) Number of students liking football to \ -

number of students liking tennis. \ \Zb%
(b) Number of students liking cricket to total

number of students.
See the figure and find the ratio of

(a) Number of triangles to the number of circles

inside the rectangle. .
(b) Number of squares to all the figures inside the
rectangle. ‘

(¢) Number of circles to all the figures inside the
rectangle.

Distances travelled by Hamid and Akhtar in an hour are 9 km and 12 km. Find the

ratio of speed of Hamid to the speed of Akhtar.

Fill in the following blanks:

15_D=Q_D

E =% |:| = % [Are these equivalent ratios?]

Find the ratio of the following :

(a) 81t0108 (b)  98t0 63

(¢) 33kmto 121 km  (d) 30 minutes to 45 minutes
Find the ratio of the following:

(a) 30 minutes to 1.5 hours (b) 40cmto 1.5m
(c) 55paiseto 1 (d) 500 mL to 2 litres

. Inayear, Seema earns¥ 1,50,000 and saves X 50,000. Find the ratio of

(a) Money that Seema earns to the money she saves.
(b) Money that she saves to the money she spends.

There are 102 teachers in a school of 3300 students. Find the ratio of the number of
teachers to the number of students.

In a college, out 0f 4320 students, 2300 are girls. Find the ratio of
(a) Number of girls to the total number of students.
(b) Number of boys to the number of girls.



DEB IO BNTBO

= ogrgdo 12. 1
1. o8 S5586° 20 $:08 wrOSes 5B 15 H08 eresth ST,

(a) erOBe Jogy HHBOAM erend Yoz Bog) AYB Jod?

(b) S8KBS° Two erde Sogpgk Dergioe Hogy Too¥) ALY Hod?
2. 2.8 $5K586° 30 Hood 8)::113&53@68 6008 HES

erd 12 2008 (838 DADY T BYD 39

S, HB DYBIEKTHOR. %R\‘?@
(a) DE S agéé Dergehe Kogy O \ _
BYR Lo a{&éé 8)(:?56(3@ Loy, \ \l):ﬁ&
(b) (88 a‘géé Dorgoe Jogy Iogo
S)w?sdqa)@ éogogs.
3. B0 Srod Hoocko DY T DB EHTSCE.
(@) ég SHBRreedo SHe (Bghere Sopg Ho

zée)aj@ K)ozp?s. ‘
(b) ég}ééﬁaé@sﬁo Sh0 &%) SHYRr Jomgd
o) T Ko JRB. ‘
(©) égﬁ&é@yéoé’sﬁ o) FEeD JHzwo Sogy,
4. 58 508050 @85 2.8 Kobrd® (Hirdod o 9 865 e $r8ckn 12 88 nens.
8 Eo¥) Ird8wss GEnY) Jrrd8 Ko AGBIEHTSOE.
5. 808 ardey HrooSo’:

15 [] 10 []
E = E = i = % [ éa@s&faéﬁ_%@?]

6. &8 (8od o8 AP S04
(a) 81,1088 (b) 98, 638
(c) 338 &.to1218 & (d) 30 Dwapen, 45 Ao
7. &8 (8od & A ZoASol:
(a) 30 dapen, 1.5 Kotoen 8 (b) 40 o. ., 1.5 . 8
(c) 55%en, T18 (d) 500 09 O., 2 Hexsy 8
8. 2.8 JoSHBost, HSr T1,50,000 Soranod $H8csw T50,000 o Hvod. I8
QB ELAS0&.
(a) 2% Joraod Lans® i v DY T day) .
(b) w3 ) BD La W &) T Key).
9. 3300 08 Dogess) w8 Wmend® 102 Hod S5 evarh. I Jowy O
“Dw‘gé{go Dogyy Boog) QB 508,
10. 2.8 Seoaos’, 4320 00 JoFRE, 2300 H08 S, HE AYBRY SHFIA.

() oo oy ot o i, CCI
(b) erOBe Sogg Ko& erend Doy,




b wo

4

|

IR gy

MATHEMATICS

(c) Number of boys to the total number of students.

11. Out of 1800 students in a school, 750 opted basketball, 800 opted cricket and remaining
opted table tennis. If a student can opt only one game, find the ratio of

(a) Number of students who opted basketball to the number of students who opted
table tennis.

(b) Number of students who opted cricket to the number of students opting basketball.
(c) Number of students who opted basketball to the total number of students.

12. Cost of a dozen pens is¥ 180 and cost of 8 ball pens is ¥ 56. Find the ratio of the cost
of a pen to the cost of a ball pen.

13. Consider the statement: Ratio of breadth and length of a hallis 2 : 5. Complete the
following table that shows some possible breadths and lengths of the hall.

14. Divide 20 pens between Sheela and Sangeeta in the ratio of 3 : 2.

Breadth of the hall (in metres) 10 I:I 40
Length of the hall (in metres) 25 50 I:I

15. Mother wants to divide ¥ 36 between her daughters Shreya and Bhoomika in the ratio
of their ages. If age of Shreya is 15 years and age of
Bhoomika s 12 years, find how much Shreya and Bhoomika
will get.

16. Present age of father is 42 years and that of his son is 14
years. Find the ratio of

(a) Present age of father to the present age of son.

(b) Age of'the father to the age of son, when son was 12
years old.

(c) Age of father after 10 years to the age of son after 10 years.

(d) Age offather to the age of son when father was 30 years old.

12.3 Proportion

Consider this situation :

Raju went to the market to purchase tomatoes. One shopkeeper tells him
that the cost of tomatoes 1s T 40 for 5 kg. Another shopkeeper gives the cost as 6
kg for ¥ 42. Now, what should Raju do? Should he purchase tomatoes from the
first shopkeeper or from the second? Will the comparison by taking the difference
help him decide? No. Why not?

Think of some way to help him. Discuss with your friends.

Consider another example.

Bhavika has 28 marbles and Vini has 180 flowers. They want to share
these among themselves. Bhavika gave 14 marbles to Vini and Vini gave 90
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flowers to Bhavika. But Vini was not satisfied.
She felt that she had given more flowers to
Bhavika than the marbles given by Bhavika
to her.

What do you think? Is Vini correct?

To solve this problem both went to Vini’s
mother Pooja.

Pooja explained that out of 28 marbles,
Bhavika gave 14 marbles to Vini.

Therefore, ratio is 14 : 28 =1: 2.

And out of 180 flowers, Vini had given 90 flowers to Bhavika.

Therefore, ratio 1s 90 : 180 =1 : 2.

Since both the ratios are the same, so the distribution is fair.

Two friends Ashma and Pankhuri went to market to purchase hair clips. They
purchased 20 hair clips for ¥ 30. Ashma gave T 12 and Pankhuri gave % 18. After
they came back home, Ashma asked Pankhuri to give 10 hair clips to her. But
Pankhuri said, “since I have given more money so [ should get more clips. You
should get 8 hair clips and I should get 12”.

Can you tell who is correct, Ashma or Pankhuri? Why?

Ratio of money given by Ashma to the money given by Pankhuri

=% 12:%18=2:3

According to Ashma’s suggestion, the ratio of the number of hair clips for
Ashma to the number of hair clips for Pankhuri=10:10=1:1

According to Pankhuri’s suggestion, the ratio of the number of hair clips
for Ashma to the number of hair clips for Pankhuri=8:12=2:3

Now, notice that according to Ashma’s distribution, ratio of hair clips and
the ratio of money given by them is not the same. But according to the Pankhuri’s
distribution the two ratios are the same.

Hence, we can say that Pankhuri’s distribution is correct.

Sharing a ratio means something!

Consider the following examples :

® Rajpurchased 3 pens for % 15 and Anu purchased 10 pens for ¥ 50. Whose
pens are more expensive?
Ratio of number of pens purchased by Raj to the number of pens purchased
by Anu=3:10.
Ratio of their costs =15:50=3: 10
Both the ratios 3 : 10 and 15 : 50 are equal. Therefore, the pens were
purchased for the same price by both.
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® Rahim sells 2 kg of apples for ¥ 180 and Roshan sells 4 kg of apples for
% 360. Whose apples are more expensive?
Ratio of the weight of apples=2kg:4kg=1 :2
Ratio of their cost =% 180:3360=6:12=1:2
et So, the ratio of weight of apples = ratio of their cost.
" (\f:yzi_ci ‘ﬁi‘%ﬁ:fﬁ Since both the ratios are equal, hence, we say that they
"~~~ areinproportion. They are selling apples at the same rate.

If two ratios are equal, we say that they are in proportion and use the
symbol ¢::’ or ‘=’ to equate the two ratios.

For the first example, we can say 3, 10, 15 and 50 are in
proportion which is written as 3 : 10 :: 15 : 50 and 1s read as
3isto 10 as 15 1s to 50 or it is written as 3 : 10 = 15 : 50.

For the second example, we can say 2, 4, 180 and 360 are 1y
n proportion which is written as 2 : 4 :: 180 : 360 and 1s read \\ 0l
as 2 is to 4 as 180 is to 360. \

Let us consider another example. \

A man travels 35 km in 2 hours. With the same speed would \
he be able to travel 70 km in 4 hours?

Now, ratio of the two distances travelled by the man is 35 to
70 =1 : 2 and the ratio of the time taken to cover these distancesis2to4=1:2.

Hence, the two ratios are equal i.e. 35: 70 =2 : 4.

Therefore, we can say that the four numbers TI‘)’ These ()

35,70, 2 and 4 are ln‘pr(‘)portlon. Check whether the given ratios
Hence, we can writeitas35:70 :2:4and  ,re equal, i.e. they are in

ey
%

read it as 35 1s to 70 as proportion.
2 1s to 4. Hence, he can travel 70 km in 4 If yes, then write them in
hours with that speed. the proper form.

1. 1:5and 3 : 15
2. 2:9and 18 : 81

3. 15:45and 5:25
4. 4:12and 9 :27

5.%10to%15and 4to 6

Now, consider this example.

Cost of 2 kg of apples is¥ 180 and a 5 kg
watermelon costs ¥ 45.

Now, ratio of the weight of apples to the
weight of watermelon is 2 : 5.

And ratio of the cost of apples to the cost
of the watermelon is 180 : 45=4: 1.

Here, the two ratios 2 : 5 and 180 : 45 are not equal,

ie.2:5# 180:45

Therefore, the four quantities 2, 5, 180 and 45 are not in proportion.
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If two ratios are not equal, then we say that they are not in proportion.
In a statement of proportion, the four quantities involved when taken in
order are known as respective terms. First and fourth terms are known
as extreme terms. Second and third terms are known as middle terms.

For example, in35:70::2: 4;
35,70, 2, 4 are the four terms. 35 and 4 are the extreme terms. 70 and 2 are
the middle terms.

Example 8 : Are the ratios 25g : 30g and 40 kg : 48 kg in proportion?

25
Solution:25g:30g=%=5:6

40

4Okg:48kg=4—8=5:6 So, 25 :30=40:48.

Therefore, the ratios 25 g : 30 g and 40 kg : 48 kg are in proportion,
1.e.25:30::40:48

The middle terms in this are 30, 40 and the extreme terms are 25, 48.

Example 9 : Are 30, 40, 45 and 60 in proportion?

30
Solution : Ratio of 30 to 40 = 20 =3:4,

. 45
Ratio of 45 to 60 = 0
Since, 30 : 40 =45 : 60.
Therefore, 30, 40, 45, 60 are in proportion.

3:4.

Example 10 : Do the ratios 15 cm to 2 m and 10 sec to 3 minutes form a
proportion?

Solution : Ratioof 15cmto2m = 15:2 x 100 (1 m = 100 cm)

= 3:40
Ratio of 10 sec to 3 min = 10 : 3 x 60 (1 min = 60 sec)
= 1:18

Since, 3 : 40# 1 : 18, therefore, the given ratios do not form a proportion.

$=——_—. EXERCISE 12.2

SRS

1. Determine if the following are in proportion.
(a) 15,45,40,120  (b) 33,121,996 (c) 24,28, 36, 48
(d) 32,48,70,210 (e) 4, 6,8, 12 ® 33,44, 75,100

2. Write True (T ) or False ( F ) against each of the following statements :
(@) 16:24::20:30 (b) 21:6::35:10 (c) 12:18::28:12
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(d) 8:9::24:27 () 52:39:3:4 () 09:036::10:4
3. Arethe following statements true?
(a) 40 persons : 200 persons =3 15:3 75
(b) 7.5 litres : 15 litres =5 kg : 10 kg
(c) 9kg:45kg=%44:%20
(d)32m:64m=6sec: 12 sec
(e) 45km: 60 km=12 hours : 15 hours
4. Determine if the following ratios form a proportion. Also, write the middle terms
and extreme terms where the ratios form a proportion.

(@ 25cm:1mand¥40:3160 (b)39litres: 65 litres and 6 bottles : 10 bottles
(c) 2kg:80kg and25g:625g  (d) 200 mL : 2.5 litreand ¥ 4 : ¥ 50

12.4 Unitary Method

Consider the following situations:
® Two friends Reshma and Seema went to market to purchase
notebooks. Reshma purchased 2 notebooks forZ 24. What is the
price of one notebook?
® A scooter requires 2 litres of petrol to cover 80 km. How many
litres of petrol is required to cover 1 km?
These are examples of the kind of situations that we face
n our daily life. How would you solve these?
Reconsider the first example: Cost of 2 notebooks is
%24
Therefore, cost of 1 notebook =324 +~2 =% 12.
Now, if you were asked to find cost of 5 such notebooks. It would be
=312 x5=2%60
Reconsider the second example: We want to know how many litres are
needed to travel 1 km.
For 80 km, petrol needed = 2 litres.

2 1
Therefore, to travel 1 km, petrol needed = %=4—0 litres.

Now, if you are asked to find how many litres of petrol are required to cover
120 km?

Then petrol needed = %xlzo litres = 3 litres.

The method in which first we find the value of one unit and then the
value of required number of units is known as Unitary Method.
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Try These Q)

1. Prepare five similar problems and ask your friends to solve them.
2. Read the table and fill in the boxes.

Time Distance travelled by Karan | Distance travelled by Kriti

2 hours 8 km 6 km

1 hour 4 km I:I

We see that,
Distance travelled by Karan in 2 hours = 8 km

8
Distance travelled by Karan in 1 hour = 5 km = 4 km

Therefore, distance travelled by Karan in 4 hours =4 x 4 = 16 km
Similarly, to find the distance travelled by Kriti in 4 hours, first find the
distance travelled by her in 1 hour.

Example 11 : If the cost of 6 cans of juice is T 210, then what will be the cost
of 4 cans of juice?

Solution : Cost of 6 cans of juice =% 210

Therefore, cost of one can of juice = % - %35

Therefore, cost of 4 cans of juice =3 35 x 4 =3 140.
Thus, cost of 4 cans of juice is ¥ 140.

Example 12 : A motorbike travels 220 km in 5 litres of petrol. How much
distance will it cover in 1.5 litres of petrol?

Solution : In 5 litres of petrol, motorbike can travel 220 km.

. ) ) 220
Therefore, in 1 litre of petrol, motor bike travels = —— km 2,
5 =, W
S . 220 s AW
Therefore, in 1.5 litres, motorbike travels = ?X1-5 km U anad %i5
_ 220 X L km = 66 km
5 10 '

Thus, the motorbike can travel 66 km in 1.5 litres of petrol.

Example 13 : If the cost of a dozen soaps is ¥ 153.60, what will be the cost of
15 such soaps?

Solution : We know that 1 dozen =12
Since, cost of 12 soaps = T 153.60
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153.60
Therefore, cost of 1 soap = I - % 12.80
Therefore, cost of 15 soaps =3 12.80 x 15=3 192

Thus, cost of 15 soaps 1s ¥ 192.

Example 14 : Cost of 105 envelopes 1s ¥ 350. How many envelopes can be
purchased for ¥ 100?
Solution : In ¥ 350, the number of envelopes that can be purchased = 105

Therefore, in X 1, number of envelopes that can be purchased = ;OT?)

Therefore, in % 100, the number of envelopes that can be

purchased = ;OT?) x 100 =30 %% ‘

Thus, 30 envelopes can be purchased for % 100. ‘_§ |
Example 15 : A car travels 90 km in 2% hours. " /

(a) How much time is required to cover 30 km with the same speed?
(b) Find the distance covered in 2 hours with the same speed.

Solution : (a) In this case, time is unknown and distance is known. Therefore,
we proceed as follows :

1 5

25 hours = Ehours =3 x 60 minutes = 150 minutes.

90 km 1s covered in 150 minutes

150

Therefore, 1 km can be covered in %minutes

Therefore, 30 km can be covered in 90 * 30 minutes i.e. 50 minutes

Thus, 30 km can be covered in 50 minutes.

(b) In this case, distance is unknown and time is known. Therefore, we
proceed as follows :

. : .5
Distance covered in 25 hours (i.e. 5 hours) =90 km

5 2
Therefore, distance covered in 1 hour =90 + > km =90 x i 36 km

Therefore, distance covered in 2 hours =36 x 2 =72 km.
Thus, in 2 hours, distance covered 1s 72 km.
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10.

1.

—. EXERCISE 12.3

—

Ifthe cost of 7 m of clothis¥ 1470, find the cost of 5 m of cloth.
Ekta earns ¥ 3000 in 10 days. How much will she earn in 30 days?

If it has rained 276 mm in the last 3 days, how many cm of rain will fall in one
full week (7 days)? Assume that the rain continues to fall at the same rate.

Cost of 5 kg of wheat 1s¥ 91.50.
(a) What will be the cost of 8 kg of wheat?
(b) What quantity of wheat can be purchased in¥ 1837

The temperature dropped 15 degree celsius in the last 30 days. If the rate of
temperature drop remains the same, how many degrees will the temperature
drop in the next ten days?

Shaina pays ¥ 15000 as rent for 3 months. How much does she has to pay for a
whole year, if the rent per month remains same?

Cost of 4 dozen bananas is ¥ 180. How many bananas can be purchased for
% 90?

The weight of 72 books is 9 kg. What is the weight of 40 such books?

. A truck requires 108 litres of diesel for covering a distance of 594 km. How

much diesel will be required by the truck to cover a distance of 1650 km?

Raju purchases 10 pens for ¥ 150 and Manish buys 7 pens for ¥ 84. Can you say
who got the pens cheaper?

Anish made 42 runs in 6 overs and Anup made 63 runs in 7 overs. Who made
more runs per over?

What have we discussed?

. For comparing quantities of the same type, we commonly use the method of

taking difference between the quantities.

In many situations, a more meaningful comparison between quantities is made
by using division, i.e. by seeing how many times one quantity is to the other quantity.
This method is known as comparison by ratio.

For example, Isha’s weight is 25 kg and her father’s weight is 75 kg. We say that
Isha’s father’s weight and Isha’s weight are inthe ratio 3 : 1.

. For comparison by ratio, the two quantities must be in the same unit. If they are not,

they should be expressed in the same unit before the ratio is taken.

The same ratio may occur in different situations.

. Note that the ratio 3 : 2 is different from 2 : 3. Thus, the order in which quantities are

taken to express their ratio is important.
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10.

1.

10
A ratio may be treated as a fraction, thus the ratio 10 : 3 may be treated as 3

Two ratios are equivalent, if the fractions corresponding to them are equivalent. Thus,
3:2isequivalentto6:4or12:8.

Aratio canbe expressed inits lowest form. For example, ratio 50 : 15 istreated as 15

50

1
initslowest form ITER Hence, thelowest form oftheratio 50: 15is10: 3.

Four quantities are said to be in proportion, if the ratio of the first and the second
quantities is equal to the ratio of the third and the fourth quantities. Thus, 3, 10,

3 15
15, 50 are in proportion, since 7~ =—--- We indicate the proportion by

10 50
3:10::15:50, itisread as 3 i1sto 10 as 15 is to 50. In the above proportion, 3 and
50 are the extreme terms and 10 and 15 are the middle terms.

The order of terms in the proportion is important. 3, 10, 15 and 50 are in proportion,

3
but 3, 10, 50 and 15 are not, since 10 is not equal to 5

The method in which we first find the value of one unit and then the value of the
required number of units is known as the unitary method. Suppose the cost of 6
cans 1s¥ 210. To find the cost of 4 cans, using the unitary method, we first find the

210
costof 1 can. Itis¥ 6 O ¥ 35. From this, we find the price of 4 cans as ¥ 35 x

4 or T 140.
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3.3
) <3
1123 32 30
W 575 ™ 5T @555 @ 47




ANSWERS

@wegéo 7.3
1 2 3 4 4 3 21 6
@ 3Tese O ey
1 4 3 2 6
@ 3 (b) s () 9 (d) 3 © 7 (@) 13
4 12 8 4
g (iii) E (iv) E v) E
(@), (i); (b), (iv); (¢), (D); (d), (v); (e), (iii)
(a) 28 (b) 16 () 12 (d) 20 (e) 3
(a) 2 (b) 2 (©) 18 (d) 2
20 15 30 45
9 3
(a) D (b) 1
(a)s5m50  (b) ssms0 = () SETH0 S0
(a) s (b) 2 (©) ¢ (d) 3 (e) 1
5 2 7 13 4
10 1, 25 1 40 1
EH %zz,q@’ - 5—5, 2RSPS —> %ZE . 0
H— @ () —(e) (i) — (@) ((iv) — () (v) = (b)
@wegéo 7.4
8 8 8 8 9 9 9 9
2 6 3
§ . 6 . 6
© 0 ' . 7
6 6

6 66 6°6 6°6 6
3.5 11 a5 3
(@ 2<% 0 7<7 © <5 @ 3
1132 22 6
5.3
© <3
1
2

(@)

Wlw J|w

Vv
oo |

187




MATHEMATICS

188

10.

3.6 7.3 2. 6.4
© 35 M 975 @ 375 ® 773
o3 7 6.3, 20
O 7550 7750 775
1 o L . 1 1
@3 O35 ©53 @5 ©@5 O
1 N o4 1 N N A
@35 ™2 O 5% 0 ¢ ®z O 3
(@), (e), (h), (§), (k) ; (b), (D, (2 ; (c),(d), 1),
@ No:§=75 5745 " 45755
b No  —=SL>5_80 48,80 Yes - & = 16
®) No 167 144°9 ~ 144 144" 144 © Yes: 35 =79
d N i =£and£¢i
(d) No: 73 =35 2435739
Ila has read less 9. Rohit

Same fraction (g ) of students got first class in both the classes.

EXERCISE 7.5

@+ - @ +
I o U 2 g 1
@9 ®F ©5 @ © 3
1 1 3
1 @3 g 03

The complete wall.

4 2 8 6
@ G ®5;  ©ED @
2
7

EXERCISE 7.6

17 23 46 22 17
(a) 21 (b) 30 (©) 53 (d)ﬁ (e) 30



10.

o

3.6 7.3 2. 6. 4
© 35 M 3975 @ 37g ™ 15553
37 6 3 5 15
O 2550 70750 77731

1 1 4 4
@3¢ O3 © 53z @ 5

1 o L o4 1
©@ 35 ® 5 O 55 0 5

(@), (e), (h), (5. (k) : (b). (D). (2) : (©), (d), (D). (D)
5 25 4 36 d §¢36

@ =9 455 55" 5755
9 sis w0 om0
) =& 70714470 144 " 144 144
d i :landi;&i
@ =95 =30 37 30

. @R SES SH0k 9. &%x§

(©

(Y]

(©

ANSWERS

1 1
6 ® 3
1 .
6 ORPY:

4 _ 16
T

4
BotHh B85S o8 é):é&o(g ) o Dumgen (Be 3B &° edtoasrgth.

@aregx)o 7.5
(a) + b - () +
Low i 2 @
(a) 9 (b) 15 (©) 7 (d)
L
" 1 (2 3 (h) 1 () 5
8 £
4 2 8 6
@ 7,3 &5 © ED @
2
7
@aregx)o 7.6
17 23 46 22

(a) 71 (b) 30 (©) 3 (d)ﬁ

[SSHE

17
30




MATHEMATICS

N A= W N -

[,
.

2 i h g(zl) ; § ; E(:l) Ky 5
5 @5 OEDO L O (k)
L5 0 5
O 5 omog @ g
gmetre 3. 2é
20 6

77 1
@ 5 ® 5 ©

—O— —O—
@ ([2]4], ®) 1[1]s

3 3 2 3 6

121 L] L

3 3 3 4 12

112 L] L

3|3 | ! 6 | 12| 4
Length of the other piece = 5 metre

8
. .4 2
The distance walked by Nandini = 10 (= g) km

13
Asha’s bookshelf is more full; by 30
9

Rahul takes less time; by —— minutes

20

EXERCISE 8.1

(a) 04 (b) 0.07 (c) 3 (d)0.5 (e) 1.23

(H 0.19 (g) both are same (h) 1.490 (i) both are same (j) 5.64
EXERCISE 8.2

(a) %0.05 (b) %0.75 (¢) %020 (d) %50.90 (e) X7.25

(a) 0.15m (b) 0.06m (c) 245m (d) 9.07m (e) 4.19m

(a) 0.5cm (b) 6.0 cm (c) 16.4cm (d) 9.8cm (e) 9.3 cm

(a) 0.008km (b) 0.088km (c) 8.888km (d) 70.005km

(a) 0.002kg (b) 0.1kg (¢) 3.750kg  (d) 5.008kg (e) 26.05kg
EXERCISE 8.3

(a) 38.587 (b) 29.432 (c) 27.63  (d) 38355 (e) 13.175 (f) 343.89

3 68.35 3. %2630 4. 525m

3.042 km 6. 22.775km 7. 18.270kg
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ANSWERS

22 5 3 1. 23 6
(H 5 (2 D (h) g(: E) (1 D )] g(: ho® s
95 9 5
M o ™3 m 5
gmetre 3. 2é
20 6
7 7 1
(a) g (b) 10 © 3
—(— —(—
(a) 214, (b) 1| L] 5
3|73 2 |3 |76
12|, 1L
3|73 3|4 |12
1|2 1| 1|1
303! 6| 12| 4
5
B 508 Ty FEH = ¢ %
5089 (HOPBONS Grso = hd (= 2) 8.5
10 5
13
%és @i GwE) 208 NG) M Jo&ob.
% B SEASPY) TS B0
@a;vpga’)o 8.1
(@) 0.4 (b) 0.07 ) 3 (d) 0.5 (e) 123
@ 019  (2) BoHasd (h) 1490 (i) Boto o G) 5.64
@a;vpga’)o 8.2
(a) %0.05 (b) 2075  (c) 0.0 ) 5090  (e) T7.25
(@) 0.15% (b) 0.06%  (c) 2.45% (d) 9.07% (e) 4.19%
(@) 0520 & (b) 6.0%0 & (c) 16420 & (d) 9.8%0. & (e) 9.3%0. &
(a) 0.0088% (b) 0.0888% (c) 8.8888&% (d) 70.0058%
(@) 0.002& (b) 0.1&r  (c) 3.750& (d) 5.008&r (e) 26.05& ¢
@a;vpga’)o 8.3
(a) 38587 (b) 29432  (c) 27.63 (d) 38355 (e) 13.175 (f) 343.89
T 68.35 3. %2630 4. 525%
3.042 8.5 6. 22.7758% 7. 182708




MATHEMATICS

EXERCISE 8.4

1. (a) 250 (b) 4746m  (c) ¥3.04 (d) 3.155km (e) 1.793 kg
2. (a) 3476 (b) 5.78 (¢) 11.71  (d) 1.753
3. 1435 4. %6.75 5. 15.55m
6. 9.850km 7. 4.425kg
EXERCISE 9.1
1. Marks Tally marks Number of students
1 ] 2
2 |1 3
3 |1 3
4 I[N T 7
5 TN 6
6 TR I 7
7 | TH. 5
8 |11 4
9 |1 3
(a) 12 (b) 8
2. Sweets Tally marks Number of students
Ladoo N N 11
Barfi [ 3
Jalebi N ] 7
Rasgulla N 9
30
(b) Ladoo
3. Numbers Tally marks How many times?
1 M 7
2 N | 6
3 N 5
4 111 4
5 N N 11
6 N 7
(a) 4 (b) 5 (¢) land6
4. (1) VillageD (i) VillageC (i) 3 (iv) 28
5. (a) VI (b) No (¢) 12

6. (a) Number of bulbs sold on Friday are 14. Similarly, number of bulbs
sold on other days can be found.
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ANSWERS
eaapggéo 8.4
(a) T2.50 (b) 47.46 % (c) 33.04 (d) 3.1558%(e) 1.793 &,
(a) 3.476 (b) 5.78 (c) 11.71 (d) 1.753
T 1435 4. T6.75 5. 15.55%
9.8508.% 7. 44258
eaap'%géo 9.1
S Een e DSEen 3)(3!’5630 60&3?3
1 || 2
2 |11 3
3 |11 3
4 TN 1] 7
5 ITNC | 6
6 TN 11 7
7 | |\|\L 5
8 |11 4
9 || 3
(a) 12 (b) 8
?os@ Kead  DFHen 3)::5"560)0 Qogy
Blavy N N | 11
=) I 3
238 ﬂ‘H I 7
Sisroer M 111 9
30
(b) ez
Qoggen ead DSHen Q) FE?
1 NI 7
2 N 6
3 N 5
4 il 4
5 NN 11
6 LV 7
(a) 4 (b) 5 (c) 1580506
(i) (o0 D (i) (w00 C (i) 3 (iv) 28
(a) VIII (b) = (c) 12

(a) 8o T 28 Soggd® esmtons wepe Koz 14. ©AYForr HADS Serood®
@Zﬁn&@o})é e éoapé“D PR -



MATHEMATICS

(b) Maximum number of bulbs were sold on Sunday.

(c¢) Same number of bulbs were sold on Wednesday and Saturday.

(d) Minimum number of bulbs were sold on Wednesday and Saturday.
(e) 10 Cartons

7. (a) Martin (b) 700 (¢) Anwar, Martin, Ranjit Singh
EXERCISE 10.1
1. (a) 12 cm (b) 133 cm (c) 60cm (d) 20cm (e) 15cm
) 52cm 2. 100cmorlm 3. 75m 4. 106 cm
5. 9.6km 6. (a)12cm (b) 27cm (c) 22cm
7. 39cm 8. 48 m 9. S5Sm 10. 20cm
11. (a)7.5cm(b) 10 cm (c) 5 cm 12. 10cm
13. 220,000 14. 7200 15. Bulbul

16. (a) 100 cm (b) 100 cm (¢) 100 cm (d) 100 cm
All the figures have same perimeter.
17. (a) 6m (b) 10m (c) Cross has greater perimeter
EXERCISE 10.2
1. (a) 9squnits (b) 5squnits (c) 4squnits (d) 8squnits (e) 10 squnits
() 4squnits (g) 6squnits (h) Ssqunits (i
(k) Ssqunits (I) 8squnits (m) 14squnits (n) 18squnits
EXERCISE 10.3

=

) 9squnits (j) 4 squnits

1. (a) 12sqem  (b) 252sqem  (c¢) 6sqkm (d) 1.40sqm
2. (a) 100sgem (b) 196sqem  (c) 25sqm

3. (c) largest area (b) smallest area

4. 6m 5. %8000 6. 3sqm 7. l4sqm
8. 1lsqm 9. 15sqm

10. (a) 28sqem  (b) 9sqcm
11. (a) 40sqcm  (b) 245sqgem  (¢) 9sqem
12. (a) 240tiles  (b) 42 tiles

EXERCISE 11.1

1. (a) 2n (b) 3n (¢) 3n (d) 2n (e) Sn
(H) 5n (g) 6n
2. (a)and (d); The number of matchsticks required in each of them is 2
3. 5n 4. 50b 5. Ss
6. tkm 7. 8r,64,80 8. (x—4)years 9. [+5
10. 2x+ 10

11. (a) 3x+ 1, x = number of squares

(b) 2x+ 1, x =number of triangles




11.
13.
16.

17.

X A W N =

10.
11.
12.

10.
11.

ANSWERS

(b) wbz8o T KBE Somgs® weyen esEdiTon
(c) engardo Hdain 8o oo a8 Voags® meyen wnEaimgon
(d) =gaedo 0805 & daredo weh DB éo%@s Deyen ©LEasrson

(e) 10erE) eo
(a) £rBS (b) 700 (¢) o6, &rgS, Bok& 2oh
e—9ap°§a’)o 10.1
. (@) 1220. & (b) 13320. &% (¢) 6020 & (d) 2020 & (e) 1520 &
(f) 5220 8% 2. 10020. & &z 18 3.7.5% 4. 10620. &
9.68 & 6. (a)1220. & (b) 2720. & (c) 22%0. &
39 0. & 8.48 & 9. 5& 10. 20%0. &
(a) 7.5 20. & (b) 10 20. & (c) 5 o. & 12. 10 0. &
%20,000 14. 27200 15. eodend

(a) 100 0. & (b) 100 2o. & (c) 100 2o. & (d) 100 2o. &
o) Heren a8 DepFoSH EOH ahoTom
(a) 6% (b) 10% (C) (5% 088 HotpSodt EOA 6O
e—9ap°§a’)o 10.2
(a) 9 . (Ssmeren (b) 5 . (Ssreren (€)4 3. (Ssreren(d)8 <. (Hsreren(e) 10 . (Hsmeren
(f) 4 3. 5meres (2) 6 3. Bsmwrer (h) 5 S.Ssmere (i) 9 3. Gsmeren(j) 4 . (Sdmeren
(k) 5 $.(psmewen (1) 8 5. (Smeen (M) 14 .(Sseeeen (n) 18 5. (Smemen
e—9ap°§a’)o 10.3
(a) 123 0. & (b) 25238 20. &%  (¢) 63 & &o(d) 1.403. &
(@) 10035 0. & (b)) 19635 0. & (¢) 25 &
(C)eogse8 (@rodo  (b) ey (@rodo
6 » 5. %8000 6. 33 & 7. 1435 &%
115 8% 9. 153 &
(a) 28 2o. & (b) 9. o. &
(a) 403 0. & (b) 2458 0. D (€) 9. 2o
(a) 24088  (b) 423

@apﬂeg:éo 11.1
. (a) 2n (b) 3n (¢) 3nm (d) 2n (e) 5m
(H) 5n (g) on
(a) H8a%w (d); (38 B 58 wAHYe Koy 2
5n 4. 50b 5. 5s
18 % 7. 8r,64,80 8. (x—4)vosgoeen 9. [+5
2x+ 10

(a) 3x+ 1, x = S8 Sogg
(b) 2x+ 1, x = &gberen Sogy




MATHEMATICS

EXERCISE 12.1

1. (a) 4:3 (b) 4:7
2. (a) 1:2 (b) 2:5
3. (a 3:2 (b)2:7 () 2:7
4. 3:4 5. 5,12, 25, Yes
6. (a) 3:4 (b) 14:9 () 3:11 d 2:3
7. (@) 1:3 (b) 4:15 (¢) 11:20 d 1:4
8. (a) 3:1 (b) 1:2
9. 17:550
10. (a) 115:216 (b) 101:115 (c) 101:216
11. (a) 3:1 (b) 16:15 () 5:12
12. 15:7 13.20;100 14. 12 and 8 15. ¥20and% 16
16. (a) 3:1 (b) 10:3 () 13:6 (d 15:1
EXERCISE 12.2
1. (a) Yes (b) No (¢) No (d) No
(e) Yes () Yes
2. (a T ® T (¢) F @ T
(e) F " T
3. (@ T ® T 0 T @ T (e) F

4. (a) Yes, Middle Terms — 1 m, ¥ 40; Extreme Terms — 25 ¢m, I 160

(b) Yes, Middle Terms — 65 litres, 6 bottles; Extreme Terms — 39 litres,
10 bottles

(c) No.
(d) Yes, Middle Terms — 2.5 litres, ¥ 4 ; Extreme Terms — 200 ml, ¥ 50

EXERCISE 12.3

1. 1,050 2. 9,000 3. 644cm

4. (a) T146.40 (b) 10kg

5. 5 degrees 6. ¥60,000 7. 24bananas 8. Skg
9. 300 litres 10. Manish 11. Anup




—
s b RS

LN e

AR SR ANl o

ANSWERS

ogrgdo 12.1

(a) 4:3 (b) 4:7

@@ 1:2 (b)2:5

() 3:2 (b)2:7 ) 2:7

3:4 5. 5,12,25, 0%

() 3:4 (b) 14:9 @) 3:11 @ 2:3

@@ 1:3 (b) 4:15 () 11:20 d 1:4

(@) 3:1 (b) 1:2

17 : 550

(@ 115:216 (b) 101:115 (c) 101:216

(@ 3:1 b) 16:15  (¢) 5:12

15:7 13.20; 100 14. 1258008 15. T20 56050316

. (@) 3:1 (b) 10:3 () 13:6 d 15:1

@ap"g:éo 12.2

(a) o5o (b) = () =& d) =&

() o (f) o5

(a T (b) T (c) F (d T

(e) F O T

(@ T (b T () T (d T () F

(a) @H%, Hgg Soren — 1 m, T 40; wody deren — 25 cm, I 160
(b) ©HD, gy Sares — 65 dedy, 6 wéS%’o%)((%beo); wody Saren — 39 dudy

LT

103)"(%3%()@
(c) No.
(d) @D, S5 Stren — 2.5 deoy, T4 ; @ody Swren — 200 DY Hextsy,, T 50
@ap"g:éo 12.3
31,050 2. 39,000 3. 64420 &
(a) T146.40 (b) 108 (v
5 &fen 6. 260,000 7. 24es838y 8. S& (v
300 dexs, 10. 555 11. o5

197




BRAIN-TEASERS

BRAIN-TEASERS

1. From abasket of mangoes when counted in twos there was
one extra, counted in threes there were two extra, counted
in fours there were three extra, counted in fives there were

g B four extra, counted in sixes there were five extra. But
= B counted in sevens there were no extra. Atleast how many
= mangoes were there in the basket?
- = 2. Aboy was asked to find the LCM of 3, 5, 12 and another number. But while
- _E calculating, he wrote 21 instead of 12 and yet came with the correct answer.
B What could be the fourth number?
£ % 3. There were five pieces of cloth of lengths 15 m,
= 21 m, 36 m, 42 m, 48 m. But all of them could be
<y E measured in whole units of a measuring rod. What
= could be the largest length of the rod?
“M_E 4. There are three cans. One of them holds exactly
.= 10 litres of milk and is full. The other two cans can hold 7 litres and 3 litres
E respectively. There is no graduation mark on the cans. A customer asks for
o % 5 litres of milk. How would you give him the amount he ask? He would not
£ be satisfied by eye estimates.
= 5. Which two digit numbers when added to 27 get reversed?
B '§ Cement mortar was being prepared by mixing cement to sand in the ratio
C'_E of 1:6 by volume. In a cement mortar of 42 units of volume, how much
L E more cement needs to be added to enrich the mortar to the ratio 2:9?
N -E 7. Inasolution of common salt in water, the ratio of salt to water was 30:70
2 &= as per weight. If we evaporate 100 grams of water from one kilogram of
-E this solution, what will be the ratio of the salt to water by weight?
’Ei—'g 8. Half a swarm of bees went to collect honey from a mustard field. Three
L E fourth of the rest went to a rose garden. The rest ten were still undecided.
= E How many bees were there in all?

9. Fifteen children are sitting in a circle.
They are asked to pass a handkerchief
to the child next to the child
immediately after them.

The game stops once the handkerchief
returns to the child it started from. This
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DS D

&E

a8 2 &% SrE Do ToBd BOVIYD 288 esSore
08, SR BHODIYD, Bod GBI GIED, TeeT iR BHODIYD
St @SPore sIow, BB S8HoAIYK Tenr eBdone
&T0W, &0 SO N GBI TN, S°R D TS
BEN oBSore HY XS, wydS® 80 I HEME Dok
&Inon?

3, 5, 12 Bk H&E Yogy GwE) & F.iD (LCM) EHFPIH 2.8 erendd
o8, =) BB, 08 12 & aherr 21 TvE wowSHBE ©8d
{¥Seedo é@_:éa meOJES Dogg QB HED)?

15 &, 21 &, 36 &, 42 b, 48 L PEHY) 0 1
S0Ken GITHOD.
=8 w@?\zlo&ﬁ) ‘@vg;os”e) Boé Ko §°e>a)€§ & SRR
ol g 18Y PED 08?

Sty Leryen sIow. BE , 2.8 KamyS® Borp
O&YG aren HEEeon O @8 Fos® ol God. HADS Bok Kamed® KT
7 derly H0cn 3 DY Fen HEEraw. EEeR IDFDS Fodrso Bk, al
B b HOY Fren arod ©lmrd. ol ©8A3 5 &Y rey, Hdd
DDFOrP BPH? &k WoSToE” B Ko FoL.

27% O Bo ©08e Hogghd YoEeI0TR), © @oSed FWSTL WHT°0N?
$3D08Te0 (H5P80 1:6 APS® 1o & B0EE® EodHrto Toe 1ol Jeed
AP VHetHoEod. 42 Y HBHOZFDO EOAS v Irgps &, 2:9
2988 35"0@"5 Q DBH DBLB0 BB D08 1D0ES Eoard ?
HBS® Jrpeen 65) B0E) [E°Se0, BDH a)ég) &3y OB 58 Q& 30:70.
2.83¢ o0 a8 &S e (Eesdeso 09 100 (e DB 6B SHEoNE, &)
500050 B 2BPe Y Dod?

350 338K K0P sare Freo Ho8 B3 HEBOST 39)08. ADD FBSS
Tefios St Hodbhen Herd) & Seman. DHADS HB Bos°  FaHo SHE*BH.
' 3mBo A B3BKen aTo0?

9. DEIPH Hod by 28 HEsevos®

Sviteniviaesl
Deen 5770 (KR Do &) DeTES BB Bisren
BIEH BDEOR. DO Biren Fis® LeaTES

BOR S5 SowE s> SARHOB. m



BRAIN-TEASERS

can be written as follows : 1 53—-55-57-59—>11-513—-515-52—54—6—8
— 10—12 —14—1. Here, we see that every child gets the handkerchief.

(i) What would happen if the handkerchief were passed to the left leaving two
children in between? Would every child get the handkerchief?

(i1) What if we leave three children in between? What do you see?
In which cases every child gets the handkerchief and in which cases not?
Try the same game with 16, 17, 18, 19, 20 children. What do you see?

10. Take two numbers 9 and 16. Divide 9 by 16 to get the remainder. What is
the remainder when 2 x 9 is divided by 16, 3 x 9 divided by 16,4 x 9
divided by 16, 5 x 9 divided by 16... 15 x 9 divided by 16. List the
remainders. Take the numbers 12 and 14. List the remainders of 12,
12 x2,12x3,12 x4, 12 x5, 12x 6,12 x 7,12 x 8,12 x 9,12 x 10,
12 x 11,12 x 12, 12 x 13 when divided by 14. Do you see any difference
between above two cases?

T T T T T

11. You have been given two cans with capacities 9 and 5 litres respectively.
There is no graduation marks on the cans nor is eye estimation possible.
How can you collect 3 litres of water from a tap? (You are allowed to pour
out water from the can). If the cans had capacities § and 6 litres respectively,
could you collect 5 litres?

12. The area of the east wall of an auditorium is 108 sq m, the area of the
north wall is 135 sq m and the area of the floor is 180 sq m. Find the
height of the auditorium.

13. If we subtract 4 from the digit at the units place of a two digit number and
add 4 to the digit at the tens place then the resulting number is doubled.
Find the number.

14. Two boatmen start simultaneously from
the opposite shores of a river and they
cross each other after 45 minutes of /"
their starting from the respective shores. . 7/“/{
They rowed till they reached the .
opposite shore and returned immediately yod =
after reaching the shores. When will they

cross each other again?

T T T T T T T T T T T T TR ATEI AT

Irllqllqil:lvlup-lEIEILI!QIQIF|E—

15. Three girls are climbing down a N
. . . 2 o ~
staircase. One girl climbs down two . v‘
steps at one go. The second girl three " :

steps at one go and the third climbs :
down four steps. They started together
from the beginning of the staircase
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10.

11.

12.

13.

14.

15.

DS D

DB & (8od JFore (@ahd): 193555759 -511-13515-52-54—-6—8
= 10-12 = 14—=1. a8, (58 dartd 38 Bohmen @‘OCSCS"?O& o0 B,
SogsgS® DK SO $0OTD BB BHSren A FHH HoHES D wHHB? (HS
DoTEE TB GHdwen ©dowe?
25365555 éﬁm’%}tﬁ) HYOD ?;6&3?_00 Do 23BHEH0B? o A KoJoTeEn?
5] ‘éotﬁo‘géj (58 Deard8 T8 SSren 0ol B D éotﬁog)@;f ©8osH? 16,
17, 18, 19, 20 Sod 3)9@55 O35 @t (Hch ook, o DR KSAFB?
9 Bakw 16 &3 ot Joggeid Bos*ol. 9 168 grRoBod 3o Hed. 2% 9D
16 & grhosadiad, 16,3 x9 & grhoSadI, 16,4 x 9 & grhoSadSsl,
16, 5 x 9 & grAoSadid... 16.. 15 x 9 & graosadsdd ko dos. 12
00w 14 Soggody &8, 12,12x2, 12x3,12x4,12x5,12x6,12x7,
12%x8,12%x9,12x10,12x 11,12 x 12, 12 x 13 0L 14 3 grA0dS8HE 3are ardae
TPO08. 3 DBV Both BodTe Kogss HFT Bk ot SEkTHTe?
o HBIe 9 WBae 5 Oy o BOAS Totd Kwen  aRiRERow. Ko
Fosrdo Hge B GEO00K) WOST® EPG® L0 S, af Hrran o 3 e
A8 N Do DEBoSH0E? (Cay 0D B YA Dok
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BRAIN-TEASERS

leaving their foot marks. They all came down in complete steps and had
their foot marks together at the bottom of the staircase. In how many
steps would there be only one pair of foot mark?

Are there any steps on which there would be no foot marks.

16. A group of soldiers was asked to fall in line making rows of three. It was
found that there was one soldier extra. Then they were asked to stand in
rows of five. It was found there were left 2 soldiers. They were asked to
stand in rows of seven. Then there were three soldiers who could not be
adjusted. At least how many soldiers were there in the group?

17. Get 100 using four 9’s and some of the symbols like +, —, x, | etc.
18. How many digits would be in the product 2 x 2 x 2 ..... x 2 (30 times)?

19. A man would be 5 minutes late to reach his destination if he rides his bike
at 30 km. per hour. But he would be 10 minutes early if he rides at the
speed of 40 km per hour. What is the distance of his destination from
where he starts?

20. The ratio of speeds of two vehicles is 2:3. If the first vehicle covers 50 km
in 3 hours, what distance would the second vehicle covers in 2 hours?

T T T T T

21. The ratio of income to expenditure of Mr. Natarajan is 7:5. If he saves
%2000 a month, what could be his income?

22. The ratio of the length to breadth of a lawn is 3:5. It costs ¥ 3200 to fence
it at the rate of ¥ 2 a metre. What would be the cost of developing the lawn
at the rate of ¥10 per square metre.

23. If one counts one for the thumb, two for the index finger, three for the
middle finger, four for the ring finger, five for the little finger and continues
counting backwards, six for the ring finger, seven for the middle finger,
eight for the index finger, 9 for the thumb, ten for the index finger, eleven
for the middle finger, twelve for the ring finger, thirteen for the little
finger, fourteen for the ring finger and so on. Which finger will be counted
as one thousand?

24. Three friends plucked some \ . _
mangoes from a mango L N
grove and collected them L | !
together in a pile and took : '
nap after that. After some
time, one of the friends
woke up and divided the

T T T T T T T T T T T T TR ATEI AT
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20.
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22.

23.
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BRAIN-TEASERS

mango extra. He gave it to a monkey nearby, took one part for himself and
slept again. Next the second friend got up unaware of what has happened,
divided the rest of the mangoes into three equal shares. There was an extra
mango. He gave it to the monkey, took one share for himself and slept
again. Next the third friend got up not knowing what happened and divided
the mangoes into three equal shares. There was an extra mango. He gave it
to the monkey, took one share for himself and went to sleep again. After
some time, all of them got up together to find 30 mangoes. How many
mangoes did the friends pluck initially?

[\
9]

. The peculiar number

There is a number which is very peculiar. This number is three times the
sum of its digits. Can you find the number?

o
(@)

. Ten saplings are to be planted in straight lines in such
way that each line has exactly four of them.

N
Ny

. What will be the next number in the sequence?
(a) 1,5,9,13,17,21, ...
(b) 2,7,12,17,22, ...
(c) 2,6,12,20, 30, ...
(d 1,2,3,5,8,13, ..
(e) 1,3,6,10,15,...
28. Observe the pattern in the following statement:
31 x39=13 x93

The two numbers on each side are co-prime and are obtained by reversing
the digits of respective numbers. Try to write some more pairs of such
numbers.

T T T T T

ANSWERS
119
28

3m
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The man takes an empty vessel other than these.

With the help of 3 litres can he takes out 9 litres of milk from the 10 litres

can and pours it in the extra can. So, 1 litre milk remains in the 10 litres

can. With the help of 7 litres can he takes out 7 litres of milk from

the extra can and pours it in the 10 litres can. The 10 litres can now has
1 + 7 = 8 litres of milk.
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28.
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(a) 1, 5,9, 13, 17, 21, ...

(b) 2,7, 12, 17, 22, ...

(c) 2, 6, 12, 20, 30, ...

(d) 1,2 3, 5,8, 13, ...

((e) 1, 3, 6, 10, 15, ...
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31 x39=13 x93
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BRAIN-TEASERS

With the help of 3 litres can he takes out 3 litres milk from the 10 litres
can. The 10 litres can now has 8 — 3 = 5 litres of milk, which he gives to
the customer.

5. 14,25,36,47, 58, 69
6. 2 units
= 7. 1:2
5-E
= B 8. 80
- 'g 9. (i) No, all children would not get it.
E (i) All would get it.
= 10. 9,2,11,4,13,6,15,8,1,10,3, 12,5, 14, 7.
= 12, 10,8, 6,4,2,0,12, 10, 8,6, 4.
- _E 11. Fill the 9 litres can. Remove 5 litres from it using the 5 litres can. Empty

H; the 5 litres can. Pour 4 litres remaining in the 9 litres can to the 5 litres
- E can.

-% Fill the 9 litres can again. Fill the remaining 5 litres can from the water in
== it. This leaves 8 litres in the 9 litres can. Empty the 5 litres can. Fill it
- 'E from the 9 litres can. You now have 3 litres left in the 9 litres can.

E 12. Height = 9m
o =

= 13. 36
-‘—E 14. 90 minutes
= E
L E 15. Steps with one pair of foot marks — 2, 3, 9, 10
H-é Steps with no foot marks — 1, 5, 7, 11
~E 16. 52
BE 9
= 17. 99 + —
.= 9
E T =
= 18. 10
19. 30 km
20. 50 km

21. 27000 per month
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11.

12.
13.
14.
15.

16.

17.

18.
19.
20.
21.
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14, 25, 36, 47, 58, 69

2 e

1:2

80

(i) B, HeoBEP oA oS, (i) ©@oBsr eI FPotard.

9,2, 11, 4,13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7.12, 10, 8, 6, 4, 2, 0, 12, 10,
8, 6, 4.

9 &Y Lamy DoHod. 5 &y ey eHTEPA0D b DLTH Fofosod. 5 dey Ker)
7@ Sahod. 9 dexs Kery &° WAD &y 4 DL 5 Doy ey & aird. 9 deog
ey D ) QoHo’. MADS 5 Hery Keyd S DB Ko& JoHol. ud 9 deg
ey 8° 8 Do $6OT%08. 5 D&Y Kery gd Sahol. 9 Hexs ey 08 T
RoHo&. 9 DY ey &° aytd B 3 et WAY eTow.

Q& = 9 &

36
90 dpen
2.8 a8 K Soes® ey - 2, 3, 9, 10
FES0Sen B ey - 1, 5, 7, 11
52

9
99 + 3
10
30 &.&
50 8.5

S T 7000
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BRAIN-TEASERS

22. % 15,00,000
23. Index finger
24. 106 mangoes
25. 27

26. One arrangement could be §
[ ]
[ ]

27. (a) 25 (b) 27 (c) 42 (d) 21 (e) 21
28. One such pairis 13 x 62 =31 x 26.

T T T T T
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27. (a) 25 (b) 27 (¢) 42 (d) 21 (e)21
28, etndod a8 28 13 x 62 =31 x 26.
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% FUNDAMENTALDUTIES )

Fundamental duties: It shall be the duty of every citizen of India-

N

age group of 6 — 14 years which came into force from 1% April 2010 in Andhra Pradesh.
Important provisions of RTE Act

(a) toabide by the Constitution and respect its ideals and institutions, the National Flag and the National
Anthem;

(b) tocherish and follow the noble ideals which inspired our national struggle for freedom;

(c) touphold and protect the sovereignty, unity and integrity of India;

(d) todefend the country and render national service when called upon to do so;

(e) to promote harmony and the spirit of common brotherhood amongst all the people of India
transcending religious, linguistic and regional or sectional diversities; to renounce practices derogatory
to the dignity of women;

()  towvalue and preserve the rich heritage of our composite culture;

(g) toprotectand improve the natural environment including forests, lakes, rivers and wild life, and to
have compassion for living creatures;

(h) todevelop the scientific temper, humanism and the spirit of inquiry and reform;

(i) tosafeguard public property and to abjure violence.

() tostrive towards excellence in all spheres of individual and collective activity so that the nation
constantly rises to higher levels of endeavour and achievement;

(k) whoisaparent or guardian, to provide opportunities for education to his child or, as the case may

k be ward between the age of six and fourteen years; J
( Right of Children to Free and Compulsory Education (RTE) Act, 2009 \

The RTE Act provides for the right of children to free and Compulsory Education to every child in the

Ensure availability of schools within the reach of the children. «Improve School infrastructure facilities.
Enroll children in the class appropriate to his/ her age.

Children have a right to receive special training in order to be at par with other children.

lgrrggiding appropriate facilities for the education of children with special needs on par with other chil-

No child shall be liable to pay any kind of fee or qhar%\?s or expenses which mai/nprever;t him or her from
pursuing and completing the elementary education. No test for admitting the children in schools.

No removal of name and repetition of the child in the same class.

No child admitted in a school shall be held back in any class or expel from school till the completion of
elementary education. ¢ No child shall be subjected fo physical punishment or mental harassment.

Admission shall not be denied or delayed on the ground that the transfer and other certificates have not
been provided ontime. ¢  Eligible candidatesalone shall be appointed as teachers.

The teaching learning process and evaluation procedures shall promote achievement of appropriate
competencies.

No board examinations shall be conducted to the children till the completion of elementary education.
Children can continue in the schools even after 14 years until completion of elementary education.

No d_iﬁscn'mination and related practices towards children belonging to backward and marginalized com-
munities.

The curriculum and evaluation procedures must be in conformity with the values enshrined in the consti-
tution and make the child free of fear and anxiety and help the child to express views freely.
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