JUNIOR INTER MATHEMATICS - IB
MODEL PAPER (English Version)

SECTION - A

Note: i) Very short answer type questions.
ii) Answer All questions.
iii) Each question carries Two marks.

1. Find the value of x, if the slope of the line passing through $(2,5)$ and $(2,3)$ is 2 .
2. Find the sum of the squares of the intercepts of the line $4 x-3 y=12$ on the axes of co-ordinates.
3. Show that the points $A(3,-2,4), B(1,1,1)$ and $C(-1,4,-2)$ are collinear.
4. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron, find the fourth vertex.
5. Find the ratio in which the XZ - plane divides the line joining $\mathrm{A}(-2,3,4)$ and $\mathrm{B}(1,2,3)$.
6. Find the equation of the plane whose intercepts on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}-$ axes are $1,2,4$ respectively.
7. Show that $2 x+3 y+7=0$ represents a plane perpendicular to $X Y$ - plane.
8. Compute $\lim _{x \rightarrow 0} x^{2} \cos \frac{2}{x}$
9. Show that $\lim _{x \rightarrow 0^{+}}\left(\frac{2|x|}{x}+x+1\right)=3$
10. Compute $\lim _{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}$

SECTION - B

Note: i) Short answer type questions.

$$
5 \times 4=20
$$

ii) Answer any Five questions.
iii) Each question carries Four marks.
11. Find the equation of the locus of P, if the ratio of the distances from P to $A(5,-4)$ and $B(7,6)$ is $2: 3$.
12. $A(5,3)$ and $B(3,-2)$ are two fixed points. Find the equation of the locus of P, so that the area of triangle PAB is 9 .
13. $\mathrm{A}(1,2), \mathrm{B}(2,-3)$ and $\mathrm{C}(-2,3)$ are three points. A point P moves sush that $\mathrm{PA}^{2}+\mathrm{PB}^{2}=2 \mathrm{PC}^{2}$. Show that the equation to the locus of P is $7 x-7 y+4=0$.
14. Transform the equation $3 x+4 y+12=0$ into
i) shape - intercept form
ii) intercept form and
iii) normal form

www.pratibha.eenadu.net

15. Find the equation of the straight lines passing through $(1,3)$ and
i) Parallel to
ii) Perpendicular to the line passing through the points $(3,-5)$ and $(-6,1)$.
16. Compute $\lim _{x \rightarrow 0}\left(\frac{\cos a x-\cos b x}{x^{2}}\right)$
17. Find real constants a, b so that the function f given by

$$
f(x)=\left\{\begin{array}{l}
\sin x, \text { if } x \leq 0 \\
x^{2}+a, \text { if } 0<x<1 \quad \text { is continuous on } R . \\
b x+3, \text { if } 1 \leq x \leq 3 \\
-3, \text { if } x>3
\end{array}\right.
$$

SECTION - C

Note: i) Long answer questions.

$$
5 \times 7=35
$$

ii) Answer any Five questions.
iii) Each question carries Seven marks.
18. Find the circumcenter of the triangle whose vertices are $(1,3),(-3,5)$ and $(5,-1)$.
19. Find the orthocenter of the triangle formed by two lines $x+2 y=0,4 x+3 y-5=0$.
20. Prove that the equation $2 x^{2}+x y-6 y^{2}+7 y-2=0$ represents a pair of straight lines.
21. Show that the lines joining the origin to the points of intersection of the curve $x^{2}-x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.
22. Find the condition for the chord $l x+m y=1$ of the circle $x^{2}+y^{2}=a^{2}$ (whose centre is the origin) to subtend a right angle at the origin.
23. Find the direction cosines of two lines which are connected by the relations $l-5 \mathrm{~m}+3 \mathrm{n}=0$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$.
24. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and (-5, -5, -2).

Writer: U. Prasanna Kumar

